login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n+2) = 64*a(n+1) - a(n), a(1)=0, a(2)=8.
1

%I #30 Jan 03 2024 23:46:55

%S 0,8,512,32760,2096128,134119432,8581547520,549084921848,

%T 35132853450752,2247953535926280,143833893445831168,

%U 9203121226997268472,588855924634379351040,37677576055373281198088,2410776011619255617326592

%N a(n+2) = 64*a(n+1) - a(n), a(1)=0, a(2)=8.

%C If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=64.

%H Vincenzo Librandi, <a href="/A154025/b154025.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (64,-1).

%F G.f.: 8*x^2/(1 -64*x +x^2). - _R. J. Mathar_, Jan 05 2011

%t CoefficientList[Series[(8z)/(z^2-64z+1),{z,0,20}],z] (* _Vincenzo Librandi_, Jan 29 2012 *)

%t LinearRecurrence[{64,-1},{0,8},20] (* _Harvey P. Dale_, Dec 19 2023 *)

%o (Magma) I:=[0, 8]; [n le 2 select I[n] else 64*Self(n-1)-Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Jan 29 2012

%o (PARI) a(n)=([0,1; -1,64]^(n-1)*[0;8])[1,1] \\ _Charles R Greathouse IV_, Sep 01 2016

%Y Cf. A065100, A154021-A154027.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Jan 04 2009