Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Oct 09 2023 14:30:01
%S 4,9,19,39,79,159,319,639,1279,2559,5119,10239,20479,40959,81919,
%T 163839,327679,655359,1310719,2621439,5242879,10485759,20971519,
%U 41943039,83886079,167772159,335544319,671088639,1342177279,2684354559
%N a(n) = 5*2^n - 1.
%C a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n + 1, where the string "{}" is used to represent the empty set and spaces are ignored. - _Ely Golden_, Nov 14 2019
%C a(n) converted to binary is 100 followed by n ones. - _Alexandre Herrera_, Oct 06 2023
%H Vincenzo Librandi, <a href="/A153894/b153894.txt">Table of n, a(n) for n = 0..1000</a>
%H B. Monjardet, <a href="https://halshs.archives-ouvertes.fr/halshs-00198635">Acyclic domains of linear orders: a survey</a>, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160. This version: <halshs-00198635>. - _N. J. A. Sloane_, Feb 07 2009
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F a(n) = 2*a(n-1) + 1, n>0.
%F a(n) = A052549(n+1).
%F G.f.: (4 - 3*x) / ( (2*x-1)*(x-1) ). - _R. J. Mathar_, Oct 22 2011
%F a(n) + a(n-1)^2 = A309779(n), a perfect square. - _Vincenzo Librandi_, Oct 28 2011
%F From _G. C. Greubel_, Sep 01 2016: (Start)
%F a(n) = 3*a(n-1) - 2*a(n-2).
%F E.g.f.: 5*exp(2*x) - exp(x). (End)
%t a=4;lst={a};Do[a=a*2+1;AppendTo[lst,a],{n,5!}];lst
%t LinearRecurrence[{3,-2},{4,9}, 25] (* or *) Table[5*2^n - 1, {n,0,25}] (* _G. C. Greubel_, Sep 01 2016 *)
%o (Magma) [5*2^n-1: n in [0..30]]; // _Vincenzo Librandi_, Oct 28 2011
%o (PARI) a(n)=5*2^n-1 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Cf. A052549, A309779.
%K nonn,easy
%O 0,1
%A _Vladimir Joseph Stephan Orlovsky_, Jan 03 2009
%E Edited by _N. J. A. Sloane_, Feb 07 2009
%E Definition corrected by _Franklin T. Adams-Watters_, Apr 22 2009