Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 19 2017 01:39:27
%S 1,4,8,22,42,70,155,246,421,722,1101,1730,2761,4062,6106,9040,13065,
%T 18806,27081,37950,53183,74290,102213,140048,191612,258426,348300,
%U 467484,622023,825016,1090957,1432290,1875930,2448610,3179136,4114996
%N McKay-Thompson series of class 15A for the Monster group with a(0) = 4.
%H G. C. Greubel, <a href="/A153765/b153765.txt">Table of n, a(n) for n = -1..1000</a>
%F Expansion of (A(q) + 3 / A(q))^2 in powers of q^2 where A(q) is g.f. for A058624.
%F Expansion of 1 + A(q) - 1 / A(q) in powers of q where A(q) is g.f. for A153084.
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u + v - 12) * (u^2 + 7*u*v + v^2) - u*v * (u*v - 63).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (15 t)) = f(t) where q = exp(2 Pi i t).
%F a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 15^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Mar 18 2017
%e T15A = 1/q + 4 + 8*q + 22*q^2 + 42*q^3 + 70*q^4 + 155*q^5 + 246*q^6 + 421*q^7 + ...
%t QP = QPochhammer; A = QP[q]*(QP[q^5]/(QP[q^3]*QP[q^15])); s = (A + 3*(q/A))^2 + O[q]^40; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 16 2015, adapted from PARI *)
%o (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = eta(x + A) * eta(x^5 + A) / (eta(x^3 + A) * eta(x^15 + A)); polcoeff( (A + 3 * x / A)^2, n))}
%o (PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); A = (eta(x^3 + A) * eta(x^5 + A) / (eta(x + A) * eta(x^15 + A)))^3 ; polcoeff( A + x - x^2 / A, n))}
%Y A058508(n) = a(n) unless n = 0. Convolution square of A058625.
%Y Cf. A134783. - _R. J. Mathar_, Jan 07 2009
%K nonn
%O -1,2
%A _Michael Somos_, Jan 01 2009