%I #10 Mar 26 2019 19:20:03
%S 2,4,16,25,89,91,105,127,290,668,869,16799,92694,137921,257825,350408,
%T 419427,723749,5271294,14223700,18090494,88123482,706641581
%N Greatest number m such that the fractional part of (3/2)^A081464(n) <= 1/m.
%F a(n):=floor(1/fract((3/2)^A081464(n))), where fract(x) = x-floor(x).
%e a(4)=25 since 1/26<fract((3/2)^A081464(4))=fract((3/2)^29)=0.039...<=1/25.
%t A081464 = {1, 2, 4, 29, 95, 153, 532, 613, 840, 2033, 2071, 3328, 12429, 112896, 129638, 371162, 1095666, 3890691, 4264691, 31685458, 61365215, 92432200, 144941960};
%t Table[fp = FractionalPart[(3/2)^A081464[[n]]]; m = Floor[1/fp];
%t While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A081464]}] (* _Robert Price_, Mar 26 2019 *)
%Y Cf. A002379, A153662, A153663, A153664, A153666, A153667, A153668.
%K nonn,more
%O 1,1
%A _Hieronymus Fischer_, Dec 31 2008
%E a(16)-a(23) from _Robert Price_, May 09 2012