login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153637
A triangular sequence with row sums (3^(n - 1)*(n + 1)!) starting at n=1 which was calculated by steps.
0
2, 9, 9, 2, 212, 2, 2, 1618, 1618, 2, 2, 2100, 54116, 2100, 2, 2, 2786, 609572, 609572, 2786, 2, 2, 3712, 1582558, 26220736, 1582558, 3712, 2, 2, 4914, 3257870, 393546494, 393546494, 3257870, 4914, 2, 2, 6428, 6069056, 1593218212, 20609969404
OFFSET
1,1
COMMENTS
Row sums are 3^(n - 1)*(n + 1)!.
A fractal plot is:
a0 = Table[Table[If[m <= n, If[Mod[A[n, m], 3] == 0, 0, 1], 0], {m, 1, 12}], {n, 1, 12}];
ListDensityPlot[a0, Mesh -> False, Axes -> False]
FORMULA
A(n,k)=A(n - 1, k - 1) + A(n - 1, k) + b[n]*n*(n + 1)*A(n - 2, k - 1);
b[n] is an array function of n.
EXAMPLE
{2},
{9, 9},
{2, 212, 2},
{2, 1618, 1618, 2},
{2, 2100, 54116, 2100, 2},
{2, 2786, 609572, 609572, 2786, 2},
{2, 3712, 1582558, 26220736, 1582558, 3712, 2},
{2, 4914, 3257870, 393546494, 393546494, 3257870, 4914, 2},
{2, 6428, 6069056, 1593218212, 20609969404, 1593218212, 6069056, 6428, 2},
{2, 8290, 10645504, 4629106368, 388201427036, 388201427036, 4629106368, 10645504, 8290, 2},
{2, 10536, 17866010, 11449232704, 2180421367268, 23900788525360, 2180421367268, 11449232704, 17866010, 10536, 2}
MATHEMATICA
Clear[a]; a = {{2}, {9, 9}, {2, 212, 2}, {2, 1618, 1618, 2},
{2, 2100, 54116, 2100, 2}, {2, 2786, 609572, 609572, 2786, 2},
{2, 3712, 1582558, 26220736, 1582558, 3712, 2}, {2, 4914, 3257870, 393546494, 393546494, 3257870, 4914, 2},
{2, 6428, 6069056, 1593218212, 20609969404, 1593218212, 6069056, 6428, 2},
{2, 8290, 10645504, 4629106368, 388201427036, 388201427036, 4629106368, 10645504, 8290, 2},
{2, 10536, 17866010, 11449232704, 2180421367268, 23900788525360, 2180421367268, 11449232704, 17866010, 10536, 2}};
Flatten[a] Table[Apply[Plus, a[[n]]], {n, 1, Length[a]}];
Table[Apply[Plus, a[[n]]]/(3^(n - 1)*(n + 1)!), {n, 1, Length[a]}];
Clear[A, b]; Table[b[n] = (39 n + 9 n^2)/(n + 1), {n, 1, 4}];
b[5] = 8; b[6] = 57/7; b[7] = 33/4; b[8] = 25/3; b[9] = 42/5;
b[10] = 93/11; b[11] = 17/2; b[12] = 111/13;
A[2, 1] := A[2, 2] = 9; A[3, 2] = 212;
A[4, 2] = 1618; A[4, 3] = 1618;
A[n_, 1] := 2; A[n_, n_] := 2;
A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + b[n]*n*(n + 1)*A[n - 2, k - 1];
a = Table[A[n, k], {n, 12}, {k, n}];
Flatten[a]
Table[Apply[Plus, a[[n]]], {n, 1, 12}];
Table[Apply[Plus, a[[n]]]/(3^(n - 1)*(n + 1)!), {n, 1, 12}];
CROSSREFS
Sequence in context: A201899 A201894 A023400 * A137618 A340866 A021338
KEYWORD
nonn,uned,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Dec 29 2008, Jan 01 2009
STATUS
approved