login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((6 + sqrt(3))^n - (6 - sqrt(3))^n)/(2*sqrt(3)).
2

%I #17 Sep 08 2022 08:45:40

%S 1,12,111,936,7569,59940,469503,3656016,28378593,219894588,1702241487,

%T 13170376440,101870548209,787824155988,6092161780959,47107744223904,

%U 364251591915201,2816463543593580,21777259989921327,168383822940467784

%N a(n) = ((6 + sqrt(3))^n - (6 - sqrt(3))^n)/(2*sqrt(3)).

%C Fourth binomial transform of A055845.

%C lim_{n -> infinity} a(n)/a(n-1) = 6 + sqrt(3) = 7.73205080756887729....

%H G. C. Greubel, <a href="/A153597/b153597.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-33).

%F G.f.: x/(1 - 12*x + 33*x^2). - _Klaus Brockhaus_, Dec 31 2008, (corrected Oct 11 2009)

%F a(n) = 12*a(n-1) - 33*a(n-2) for n>1; a(0)=0, a(1)=1. - _Philippe Deléham_, Jan 01 2009

%F E.g.f.: sinh(sqrt(3)*x)*exp(6*x)/sqrt(3). - _Ilya Gutkovskiy_, Aug 23 2016

%t LinearRecurrence[{12,-33},{1, 12},25] (* _G. C. Greubel_, Aug 22 2016 *)

%o (Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((6+r)^n-(6-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Dec 31 2008

%o (Sage) [lucas_number1(n,12,33) for n in range(1, 21)] # _Zerinvary Lajos_, Apr 27 2009

%o (Magma) I:=[1,12]; [n le 2 select I[n] else 12*Self(n-1)-33*Self(n-2): n in [1..25]]; // _Vincenzo Librandi_, Aug 23 2016

%Y Cf. A002194 (decimal expansion of sqrt(3)), A055845.

%K nonn

%O 1,2

%A Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

%E Extended beyond a(7) by _Klaus Brockhaus_, Dec 31 2008

%E Edited by _Klaus Brockhaus_, Oct 11 2009