Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 08 2022 08:45:40
%S 1,18,245,2988,34429,383670,4186169,45041112,480032665,5082340122,
%T 53559541661,562566880260,5895000053461,61667217421758,
%U 644304909368225,6725778192309168,70163919621475249,731614075994130210
%N a(n) = ((9 + sqrt(2))^n - (9 - sqrt(2))^n)/(2*sqrt(2)).
%C Preceded by zero, this is the eighth binomial transform of the Pell sequence A000129. - _Sergio Falcon_, Sep 21 2009; edited by _Klaus Brockhaus_, Oct 11 2009
%C Eighth binomial transform of A048697.
%C First differences are in A164600.
%C lim_{n -> infinity} a(n)/a(n-1) = 9 + sqrt(2) = 10.4142135623....
%H Vincenzo Librandi, <a href="/A153593/b153593.txt">Table of n, a(n) for n = 1..100</a>
%H S. Falcon, <a href="http://dx.doi.org/10.9734/BJMCS/2014/11783">Iterated Binomial Transforms of the k-Fibonacci Sequence</a>, British Journal of Mathematics & Computer Science, 4 (22): 2014.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-79).
%F a(n) = 18*a(n-1) - 79*a(n-2) for n>1; a(0)=0, a(1)=1. - _Philippe Deléham_, Jan 01 2009
%F G.f.: x/(1 - 18*x + 79*x^2). - _Klaus Brockhaus_, Dec 31 2008, corrected Oct 11 2009
%F a(n) = Sum[Binomial[n - 1 - i, i] (-1)^i * 18^(n - 1 - 2 i) * 79^i, {i, 0, Floor[(n - 1)/2]}]. - _Sergio Falcon_, Sep 21 2009
%F E.g.f.: exp(9*x)*sinh(sqrt(2)*x)/sqrt(2). - _Ilya Gutkovskiy_, Aug 12 2017
%t Join[{a=1,b=18},Table[c=18*b-79*a;a=b;b=c,{n,40}]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 09 2011 *)
%t LinearRecurrence[{18,-79},{1,18},25] (* _G. C. Greubel_, Aug 22 2016 *)
%o (Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((9+r)^n-(9-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Dec 31 2008
%Y Cf. A000129 (Pell numbers), A007070, A081185, A081184, A081183, A081182, A081180, A081179. - _Sergio Falcon_, Sep 21 2009
%Y Cf. A002193 (decimal expansion of sqrt(2)), A048697, A164600.
%K nonn
%O 1,2
%A Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008
%E Extended beyond a(7) by _Klaus Brockhaus_, Dec 31 2008
%E Edited by _Klaus Brockhaus_, Oct 11 2009