Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jan 14 2023 13:24:03
%S 5,6,6,1,7,7,6,7,5,8,1,1,3,8,4,5,5,0,2,7,5,9,2,9,3,2,1,2,1,2,0,6,2,0,
%T 0,3,7,3,6,1,4,4,1,9,7,8,6,5,9,0,5,5,7,0,4,9,2,3,4,4,4,1,3,2,5,4,5,7,
%U 5,5,5,4,5,3,0,2,0,8,6,8,5,6,1,4,8,5,5,6,7,8,4,2,1,8,1,8,3,2,6,6,4,6,1,5,3
%N Decimal expansion of Sum_{n>=1} 1/A000032(2*n).
%C From _Peter Bala_, Oct 15 2019: (Start)
%C c = (1/4)*(theta_3( (3-sqrt(5))/2 )^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A056854.
%C Series acceleration formulas (L(n) = A000032(n)):
%C c = 1 - 5*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 - 5) ).
%C c = (1/6) + 15*Sum_{n >= 1} 1/( L(2*n)*(L(2*n)^2 + 5) ).
%C c = (11/16) - 10*Sum_{n >= 1} (L(2*n)^2 - 10)/( L(2*n)*(L(2*n)^2 - 5)*(L(2*n)^2 - 20) ). (End)
%C Compare with Sum_{n >= 1} 1/(L(2*n) - sqrt(5)) = phi and Sum_{n >= 1} 1/(L(2*n) + sqrt(5)) = 2 - phi, where phi = (sqrt(5) + 1)/2. - _Peter Bala_, Nov 23 2019
%C This constant is transcendental (Duverney et al., 1997). - _Amiram Eldar_, Oct 30 2020
%D J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
%H Daniel Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa, <a href="http://doi.org/10.3792/pjaa.73.140">Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers</a>, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Vol. 73, No. 7 (1997), pp. 140-142.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e 0.56617767581138455027...
%t First[ RealDigits[ N[(EllipticTheta[3, 0, GoldenRatio^(-2)]^2 - 1)/4, 120], 10, 105]](* _Jean-François Alcover_, Jun 07 2012, after _Eric W. Weisstein_ *)
%o (PARI) th3(x)=1 + 2*suminf(n=1,x^n^2)
%o phi=(sqrt(5)+1)/2
%o (th3(phi^-2)^2-1)/4 \\ _Charles R Greathouse IV_, Jun 06 2016
%Y Cf. A000032, A000122, A056854, A093540, A153416.
%K nonn,cons
%O 0,1
%A _Eric W. Weisstein_, Dec 25 2008