login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of zig-zag paths from top to bottom of a 2n by 2n square whose color is that of the top right corner
5

%I #8 Feb 20 2017 00:28:02

%S 1,8,52,296,1556,7768,37416,175568,807604,3657464,16357496,72407728,

%T 317777032,1384524656,5994736336,25816193952,110652549620,

%U 472302724408,2008499580504,8513063608304,35975584631128,151621915797840

%N Number of zig-zag paths from top to bottom of a 2n by 2n square whose color is that of the top right corner

%H Indranil Ghosh, <a href="/A153336/b153336.txt">Table of n, a(n) for n = 1..1000</a>

%H Joseph Myers, <a href="http://www.polyomino.org.uk/publications/2008/bmo1-2009-q1.pdf">BMO 2008--2009 Round 1 Problem 1---Generalisation</a>

%F a(n) = (2n+1)2^(2n-2) - 2(2n-1)binomial(2n-2,n-1).

%e a(3) = (2*3 + 1)*2 ^ (2*3 - 2) - 2*(2*3 - 1) * binomial(2*3 - 2, 3 - 1) = 52. - _Indranil Ghosh_, Feb 19 2017

%t Table[(2n+1) 2^(2n-2)-2(2n-1) Binomial[2n-2,n-1],{n,1,22}] (* _Indranil Ghosh_, Feb 19 2017 *)

%o (Python)

%o import math

%o def C(n,r):

%o ....f=math.factorial

%o ....return f(n)/f(r)/f(n-r)

%o def A153336(n):

%o ....return str((2*n+1)*2**(2*n-2)-2*(2*n-1)*C(2*n-2,n-1)) # _Indranil Ghosh_, Feb 19 2017

%o (PARI) a(n) = (2*n+1)*2^(2*n-2) - 2*(2*n-1)*binomial(2*n-2, n-1); \\ _Michel Marcus_, Feb 19 2017

%Y Cf. A102699, A153334, A153335, A153337, A153338.

%K easy,nonn

%O 1,2

%A _Joseph Myers_, Dec 24 2008, Dec 31 2008