OFFSET
1,1
COMMENTS
These numbers are always even. If k is odd, then 10^k - 1 produces a number with an odd number of 9's which 99 does not divide. Also the numbers produced by this formula are palindromic.
EXAMPLE
For the first entry, k=2, the formula produces the prime 151.
MATHEMATICA
2*Floor[IntegerLength[#]/2]&/@Select[Table[FromDigits[Join[{1}, PadRight[ {}, 2n, {5, 1}]]], {n, 1000}], PrimeQ] (* Harvey P. Dale, Jun 27 2012 *)
PROG
(PARI) /* n=number of values to test, r=repeat digits, e.g., 14, 121, 177, 1234, etc.
d = last digit appended to the end */
repr(n, r, d) = ln=length(Str(r)); for(x=0, n, y=(10^(ln*x)-1)*10*r/(10^ln-1)+1; if(ispseudoprime(y), print1(ln*x", ")))
(Python)
from sympy import isprime
def afind(limit, startk=2):
k = startk + (startk%2)
t = int("1" + "51"*(k//2))
for k in range(startk, limit+1, 2):
if isprime(t): print(k, end=", ")
t *= 100
t += 51
afind(600) # Michael S. Branicky, Dec 13 2021
CROSSREFS
KEYWORD
nonn,base,hard,more
AUTHOR
Cino Hilliard, Dec 23 2008
EXTENSIONS
a(7) provided by Harvey P. Dale, Jun 27 2012
Offset edited and a(8)-a(9) from Michael S. Branicky, Dec 13 2021
STATUS
approved