login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2))); Row sums are 2*3^n.
0

%I #2 Mar 30 2012 17:34:28

%S 2,3,3,2,14,2,2,25,25,2,2,36,77,45,2,2,65,167,176,74,2,2,148,313,424,

%T 412,157,2,2,393,704,980,1079,812,402,2,2,1124,1826,1684,2788,2620,

%U 1943,1133,2,2,3313,5137,3510,6659,7595,4563,5263,3322,2,2,9876,15011,8647

%N Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2))); Row sums are 2*3^n.

%C Row sums:

%C {2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098,...}.

%F p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2))).

%e {2},

%e {3, 3},

%e {2, 14, 2},

%e {2, 25, 25, 2},

%e {2, 36, 77, 45, 2},

%e {2, 65, 167, 176, 74, 2},

%e {2, 148, 313, 424, 412, 157, 2},

%e {2, 393, 704, 980, 1079, 812, 402, 2},

%e {2, 1124, 1826, 1684, 2788, 2620, 1943, 1133, 2},

%e {2, 3313, 5137, 3510, 6659, 7595, 4563, 5263, 3322, 2},

%e {2, 9876, 15011, 8647, 10169, 20815, 18719, 9826, 15146, 9885, 2}

%t Clear[p, n, m, x];

%t p[x, 0] = 2; p[x, 1] = 3*x + 3; p[x, 2] = 2*x^2 + 14*x + 2;

%t p[x_, n_] := p[x, n] = (x + 1)*(p[x, n - 1] + 3^(n - 2)*(x + x^Floor[n/2] + x^(n - 2)));

%t Table[ExpandAll[p[x, n]], {n, 0, 10}];

%t Table[CoefficientList[p[x, n], x], {n, 0, 10}];

%t Flatten[%]

%Y A025192

%K nonn,uned,tabl

%O 0,1

%A _Roger L. Bagula_, Dec 23 2008