Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Mar 09 2024 10:29:02
%S 1,25,649,16849,437425,11356201,294823801,7654062625,198710804449,
%T 5158826853049,133930787374825,3477041644892401,90269151979827601,
%U 2343520909830625225,60841274503616428249,1579529616184196509249,41006928746285492812225
%N Solutions of the Pell-like equation 1 + 6*A*A = 7*B*B, with A, B integers.
%C B is of the form B(i) = 26*B(i-1) - B(i-2) for B(0) = 1, B(1) = 25 (this sequence).
%C A is of the form A(i) = 26*A(i-1) - A(i-2) for A(0) = 1, A(1) = 27.
%C In general a Pell-like equation of the form 1 + X*A*A = (X + 1)*B*B has the solution A(i) = (4*X + 2)*A(i-1) - A(i-2), for A(0) = 1 and A(1) = (4*X + 3), and B(i) = (4*X + 2)*B(i-1) - B(i-2) for B(0) = 1 and B(1) = (4*X + 1).
%C Examples in the OEIS:
%C X = 1 gives A002315 for A(i) and A001653 for B(i);
%C X = 2 gives A054320 for A(i) and A072256 for B(i);
%C X = 3 gives A028230 for A(i) and A001570 for B(i);
%C X = 4 gives A049629 for A(i) and A007805 for B(i);
%C X = 5 gives A133283 for A(i) and A157014 for B(i);
%C X = 6 gives A157461 for A(i) and this sequence for B(i).
%C Positive values of x (or y) satisfying x^2 - 26*x*y + y^2 + 24 = 0. - _Colin Barker_, Feb 20 2014
%H Vincenzo Librandi, <a href="/A153111/b153111.txt">Table of n, a(n) for n = 1..200</a>
%H Luigi Cimmino, <a href="http://arxiv.org/abs/math/0510417">Algebraic relations for recursive sequences</a>, arXiv:math/0510417 [math.NT], 2005-2008.
%H Jeroen Demeyer, <a href="http://arxiv.org/abs/0807.1970">Diophantine sets of polynomials over number fields</a>, arXiv:0807.1970 [math.NT], 2008.
%H Franz Lemmermeyer, <a href="http://arxiv.org/abs/math/0311306">Conics - a Poor Man's Elliptic Curves</a>, arXiv:math/0311306 [math.NT], 2003.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (26,-1).
%F a(n) = 26*a(n-1) - a(n-2). - _Colin Barker_, Feb 20 2014
%F G.f.: -x*(x - 1) / (x^2 - 26*x + 1). - _Colin Barker_, Feb 20 2014
%F a(n) = (1/14)*(7 - sqrt(42))*(1 + (13 + 2*sqrt(42))^(2*n - 1))/(13 + 2*sqrt(42))^(n - 1). - _Bruno Berselli_, Feb 25 2014
%F E.g.f.: (1/7)*(7*cosh(2*sqrt(42)*x) - sqrt(42)*sinh(2*sqrt(42)*x))*exp(13*x) - 1. - _Franck Maminirina Ramaharo_, Jan 07 2019
%t CoefficientList[Series[(1 - x)/(x^2 - 26 x + 1), {x, 0, 40}], x] (* _Vincenzo Librandi_, Feb 22 2014 *)
%t LinearRecurrence[{26, -1}, {1, 25}, 20] (* _Jean-François Alcover_, Jan 07 2019 *)
%o (PARI) Vec(-x*(x-1)/(x^2-26*x+1) + O(x^100)) \\ _Colin Barker_, Feb 20 2014
%o (Magma) I:=[1,25]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Feb 22 2014
%Y Cf. A002315, A001653, A054320, A072256, A001078, A028230, A001570, A049629, A007805, A133283, A140480.
%Y Cf. similar sequences listed in A238379.
%K nonn,easy
%O 1,2
%A _Ctibor O. Zizka_, Dec 18 2008
%E More terms from _Philippe Deléham_, Sep 19 2009; corrected by _N. J. A. Sloane_, Sep 20 2009
%E Additional term from _Colin Barker_, Feb 20 2014