The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153046 Multiplicative encoding of Losanitsch's triangle (A034851) 1
 2, 6, 30, 3150, 6063750, 1717605545906250, 2623719141408662719128738281250, 1019408754706474658106933474548666805595768826381331909476074218750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Eric Weisstein's World of Mathematics, Losanitsch's Triangle. FORMULA prime(k + 1)^(a(n, k)), where prime(k + 1) is the (k + 1)st prime number (A000040), n is a row number in Losanitsch's triangle and k is a column number (in both the numbering starts from 0) and a(n, k) is the value look-up function for Losanitsch's triangle. EXAMPLE The fourth row of Losanitsch's triangle is 1, 2, 4, 2, 1 and the first five primes are 2, 3, 5, 7, 11, therefore the fourth term is 2^1 * 3^2 * 5^4 * 7^2 * 11^1 = 6063750. MATHEMATICA a[n_, 0] := 1; a[n_, n_] := 1; a[n_, k_] := a[n, k] = a[n - 1, k - 1] + a[n - 1, k] - Binomial[n/2 - 1, (k - 1)/2]Mod[k, 2]Mod[n - 1, 2]; (* The above comes from Weisstein's Mathematica notebook *) multEncLoz[n_] := Times @@ Table[Prime[k + 1]^a[n, k], {k, 0, n}]; Table[multEncLoz[n], {n, 0, 7}] CROSSREFS Cf. A007188 (multiplicative encoding of Pascal's triangle). Sequence in context: A227105 A127295 A352127 * A088260 A232171 A231816 Adjacent sequences: A153043 A153044 A153045 * A153047 A153048 A153049 KEYWORD nonn AUTHOR Alonso del Arte, Dec 17 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 04:47 EDT 2023. Contains 361529 sequences. (Running on oeis4.)