Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jul 02 2021 11:25:15
%S 0,0,11,11,10,18,67,71,60,32,187,351,30,46,519,337,128,220,577,483,
%T 366,286,507,1153,248,336,2489,847,70,818,871,2181,1108,116,2861,2275,
%U 694,130,2763,3645,100,2352,2823,1863,2278,158,3607,6617,636,920,6181,4019
%N Sum of proper divisors minus the number of proper divisors of pentagonal number A000326(n).
%H B. D. Swan, <a href="/A152986/b152986.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n)=A001065(A000326(n))-A032741(A000326(n)) = A152770(A000326(n)).
%p A000326 := proc(n) n*(3*n-1)/2 ; end: A000203 := proc(n) numtheory[sigma](n) ; end: A000005 := proc(n) numtheory[tau](n) ; end: A152770 := proc(n) A000203(n)-A000005(n)-n+1 ; end: A152986 := proc(n) A152770(A000326(n)) ; end: for n from 1 to 80 do printf("%a,",A152986(n)) ; od: # _R. J. Mathar_, Jan 03 2009
%t DivisorSigma[1,#]-#-DivisorSigma[0,#]+1&/@PolygonalNumber[5,Range[60]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 02 2021 *)
%Y Cf. A000005, A000203, A000326, A001065, A032741, A152770.
%K easy,nonn,look
%O 1,3
%A _Omar E. Pol_, Dec 22 2008
%E Extended by _R. J. Mathar_, Jan 03 2009