OFFSET
1,3
COMMENTS
The redundant Stern-Brocot structure is constructed row by row: insert between consecutive terms of the full Stern-Brocot tree their mediant (non-reduced), where the mediant of s/t and u/v = (s+u)/(t+v);
a(2^n-n+2*k) = A007305(2^(n-1)+k+2) for 0<=k<2^(n-1);
the graph of this structure describes an interesting ternary representation of the positive rational numbers;
A060188(k+2) = Sum(a(i): 2^k <= i < 2^(k+1)).
REFERENCES
Milad Niqui, Formalising Exact Arithmetic, Ph.D. thesis, Radboud Universiteit Nijmegen, IPA Dissertation Series 2004-10, 2.6, p.65f .
LINKS
EXAMPLE
[0/1] . . . . . . . . . . . . . . . . . . . . . . . . . . . [1/0]
.............................. 1/1
............. 1/2 ............ 3/3 ............ 2/1
..... 1/3 ... 3/6 .... 2/3 ... 5/5 ... 3/2 .... 6/3 ... 3/1
. 1/4 3/9 2/5 5/10 3/5 6/9 3/4 7/7 4/3 9/6 5/3 10/5 5/2 9/3 4/1.
CROSSREFS
KEYWORD
frac,nonn,tabf
AUTHOR
Reinhard Zumkeller, Dec 22 2008
STATUS
approved