login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Von Staudt primes which are not safe primes (A005385).
1

%I #10 Jan 27 2014 07:41:16

%S 239,443,647,659,827,1223,1259,1499,1787,1847,2087,2243,2339,2687,

%T 2699,3299,3659,3767,4943,5903,6263,6287,6299,6563,6863,6959,7043,

%U 7487,7583,7883,7907,7919,8087,8219,8243,8387,8627,8663

%N Von Staudt primes which are not safe primes (A005385).

%H Jean-François Alcover, <a href="/A152952/b152952.txt">Table of n, a(n) for n = 1..100</a>

%H P. Luschny, <a href="http://www.luschny.de/math/zeta/VonStaudtPrimes.html">Von Staudt prime number, definition and computation.</a>

%e 239 is a von Staudt prime because the denominator(B(239-1)/(239-1))=239*12, where B(n) is the Bernoulli number, but (239-1)/2=119=7*17 is not a prime.

%p a := proc(n) local k,L; L:= []; for k from 11 by 12 to n do map(i->i+1,divisors(k-1)); select(isprime,%) minus {2,3}; if % = {k} then L := [op(L),k] fi; od; select(isprime,map(i->i+i+1,select(isprime,[$1..iquo(n,2)]))): sort(convert(convert(L,set) minus convert(%,set),list)): end:

%t vonStaudtPrimeQ[p_?PrimeQ] := Denominator[BernoulliB[p-1]/(p-1)] == 12*p; safePrimeQ[p_?PrimeQ] := PrimeQ[(p-1)/2]; Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[vonStaudtPrimeQ[p] && !safePrimeQ[p], Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Jan 27 2014 *)

%Y Cf. A092307, A005385 and A152951.

%K nonn

%O 1,1

%A _Peter Luschny_, Dec 25 2008