Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 12 2021 22:24:45
%S 1,2,7,14,29,50,92,148,246,386,603,904,1367,1996,2914,4160,5924,8290,
%T 11581,15942,21878,29712,40184,53876,71979,95436,126097,165556,216594,
%U 281848,365548,471808,607050,777794,993528,1264338,1604434,2029026
%N McKay-Thompson series of class 17A for the Monster group with a(0) = 2.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H Vaclav Kotesovec, <a href="/A152944/b152944.txt">Table of n, a(n) for n = -1..10000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of q^(-1) * ((psi(q^2) * phi(q^17) - q^4 * phi(q) * psi(q^34)) / (f(-q) * f(-q^17)))^2 in powers of q where phi(), psi(), f() are Ramanujan theta functions.
%F Expansion of q^(-1) * (F(q) - q^4 / F(q))^2 / (chi(-q) * chi(-q^17))^4 in powers of q where F(q) = G(q^17) / G(q), G(q) = chi(q) * chi(-q^2) and chi() is a Ramanujan theta function.
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v - u^2) * (u - v^2) - 4 * (1 + u + v) * (u + v + u*v).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (17 t)) = f(t) where q = exp(2 Pi i t).
%F a(n) = A058530(n) unless n = 0. Convolution square of A058639.
%F a(n) ~ exp(4*Pi*sqrt(n/17)) / (sqrt(2) * 17^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 28 2018
%e G.f. = 1/q + 2 + 7*q + 14*q^2 + 29*q^3 + 50*q^4 + 92*q^5 + 148*q^6 + 246*q^7 + ...
%t QP = QPochhammer; s = (QP[q^4]^2*(QP[q^34]^5/(QP[q]*QP[q^2]* QP[q^17]^3* QP[q^68]^2)) - q^4*QP[q^2]^5*(QP[q^68]^2/(QP[q]^3*QP[q^4]^2*QP[q^17]* QP[q^34])))^2 + O[q]^40; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 15 2015, adapted from PARI *)
%t nmax = 60; CoefficientList[Series[(Product[(1+x^k) * (1+x^(2*k))^2 * (1+x^(17*k)) * (1+x^(34*k-17))^2, {k, 1, nmax}] - x^4*Product[(1+x^k) * (1+x^(2*k-1))^2 * (1+x^(17*k)) * (1+x^(34*k))^2, {k, 1, nmax}])^2, {x, 0, nmax}], x] (* _Vaclav Kotesovec_, May 01 2017 *)
%t a[ n_] := SeriesCoefficient[ ((EllipticTheta[ 2, 0, q] EllipticTheta[ 3, 0, q^17] - EllipticTheta[ 2, 0, q^17] EllipticTheta[ 3, 0, q]) / (QPochhammer[ q] QPochhammer[ q^16]))^2 / (4 q^(3/2)), {q, 0, n}]; (* _Michael Somos_, Sep 06 2018 *)
%o (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 * eta(x^34 + A)^5 / (eta(x + A) * eta(x^2 + A) * eta(x^17 + A)^3 * eta(x^68 + A)^2) - x^4 * eta(x^2 + A)^5 * eta(x^68 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^17 + A) * eta(x^34 + A)))^2, n))};
%Y Cf. A058530, A058639.
%K nonn
%O -1,2
%A _Michael Somos_, Dec 15 2008