login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 3 as m varies.
47

%I #21 Jul 03 2023 10:54:04

%S 289,1962,13429,92025,630730,4323069,29630737,203092074,1392013765,

%T 9541004265,65395016074,448224108237,3072173741569,21056992082730,

%U 144326770837525,989230403779929,6780286055621962,46472771985573789,318529117843394545,2183231052918188010

%N Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of two m-gonal polygonal components chained with string components of length 3 as m varies.

%H S. Schlicker, L. Morales, and D. Schultheis, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Schlicker/schlicker.html">Polygonal chain sequences in the space of compact sets</a>, J. Integer Seq. 12 (2009), no. 1, Article 09.1.7, 23 pp.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8, -8, 1).

%F Conjectures from _Colin Barker_, Jul 09 2020: (Start)

%F G.f.: x^2*(289 - 350*x + 45*x^2) / ((1 - x)*(1 - 7*x + x^2)).

%F a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>4.

%F (End)

%p with(combinat): a := proc(n) local aa, b, c, d, lambda, delta, R, S, F, L, k, l: k:=2: l:=3: F := t -> fibonacci(t): L := t -> fibonacci(t-1)+fibonacci(t+1): aa := (n, l) -> L(2*n)*F(l-2)+F(2*n+2)*F(l-1): b := (n, l) -> L(2*n)*F(l-1)+F(2*n+2)*F(l): c := (n, l) -> F(2*n+2)*F(l-2)+F(n+2)^2*F(l-1): d := (n, l) -> F(2*n+2)*F(l-1)+F(n+2)^2*F(l): lambda := (n,l) -> (d(n, l)+aa(n, l)+sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): delta := (n,l) -> (d(n, l)+aa(n, l)-sqrt((d(n, l)-aa(n, l))^2+4*b(n, l)*c(n, l)))*(1/2): R := (n,l) -> ((lambda(n, l)-d(n, l))*L(2*n)+b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): S := (n,l) -> ((lambda(n, l)-aa(n, l))*L(2*n)-b(n, l)*F(2*n+2))/(2*lambda(n, l)-d(n, l)-aa(n, l)): simplify(R(n, l)*lambda(n, l)^(k-1)+S(n, l)*delta(n, l)^(k-1)); end proc;

%Y Cf. A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152935.

%K nonn

%O 2,1

%A _Steven Schlicker_, Dec 15 2008