The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152862 Triangle read by rows: vector recursion: s=5; v(n)={s^(n+1),s^(n+1)-Sum[s^i,{i,2,n}],s^n,...,-1}/s^2. 0

%I #3 Mar 30 2012 17:34:28

%S 1,1,-1,5,-4,-1,25,-19,-5,-1,125,-94,-25,-5,-1,625,-469,-125,-25,-5,

%T -1,3125,-2344,-625,-125,-25,-5,-1,15625,-11719,-3125,-625,-125,-25,

%U -5,-1,78125,-58594,-15625,-3125,-625,-125,-25,-5,-1,390625,-292969,-78125

%N Triangle read by rows: vector recursion: s=5; v(n)={s^(n+1),s^(n+1)-Sum[s^i,{i,2,n}],s^n,...,-1}/s^2.

%C Except for first row, row sums are zero.

%F s = 5; v(n) = {s^(n+1),s^(n+1)-Sum[s^i,{i,2,n}],s^n,...,-1}/s^2.

%e {1},

%e {1, -1},

%e {5, -4, -1},

%e {25, -19, -5, -1},

%e {125, -94, -25, -5, -1},

%e {625, -469, -125, -25, -5, -1},

%e {3125, -2344, -625, -125, -25, -5, -1},

%e {15625, -11719, -3125, -625, -125, -25, -5, -1},

%e {78125, -58594, -15625, -3125, -625, -125, -25, -5, -1},

%e {390625, -292969, -78125, -15625, -3125, -625, -125, -25, -5, -1},

%e {1953125, -1464844, -390625, -78125, -15625, -3125, -625, -125, -25, -5, -1}

%t Clear[s, b, n]; s = 5; b[0] = {1}; b[1] = {1, -1};

%t b[n_] := Join[{s^(n + 1)}, -{s^(n + 1) - Sum[s^i, {i, n, 2, -1}]}, -Table[s^i, {i, n, 2, -1}]]/s^2;

%t Table[b[n], {n, 0, 10}];

%t Flatten[%]

%K tabl,sign

%O 0,4

%A _Roger L. Bagula_, Dec 14 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 15:47 EDT 2024. Contains 372778 sequences. (Running on oeis4.)