Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #52 Nov 17 2024 17:09:54
%S 2,12,26,44,66,92,122,156,194,236,282,332,386,444,506,572,642,716,794,
%T 876,962,1052,1146,1244,1346,1452,1562,1676,1794,1916,2042,2172,2306,
%U 2444,2586,2732,2882,3036,3194,3356,3522,3692,3866,4044,4226,4412,4602,4796,4994
%N a(n) = 2*(n^2 + 2*n - 2).
%C Positive numbers k such that 2*k + 12 is a square. [Comment simplified by _Zak Seidov_, Jan 14 2009]
%C Sequence gives positive x values of solutions (x,y) to the Diophantine equation 2*x^3 + 12*x^2 = y^2. Corresponding y values are 8*A154560. There are three other solutions: (0,0), (-4,8) and (-6,0).
%C From a(2) onwards, third subdiagonal of triangle defined in A144562.
%C Also, nonnegative numbers of the form (m+sqrt(-3))^2 + (m-sqrt(-3))^2. - _Bruno Berselli_, Mar 13 2015
%C a(n-1) is the maximum Zagreb index over all maximal 2-degenerate graphs with n vertices. The extremal graphs are 2-stars, so the bound also applies to 2-trees. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - _Allan Bickle_, Apr 11 2024
%H Vincenzo Librandi, <a href="/A152811/b152811.txt">Table of n, a(n) for n = 1..10000</a>
%H Allan Bickle, <a href="https://doi.org/10.20429/tag.2024.000105">A Survey of Maximal k-degenerate Graphs and k-Trees</a>, Theory and Applications of Graphs, Vol. 0(1) (2024), Article 5.
%H Allan Bickle, <a href="https://ajc.maths.uq.edu.au/pdf/89/ajc_v89_p167.pdf">Zagreb Indices of Maximal k-degenerate Graphs</a>, Australas. J. Combin., Vol. 89(1) (2024), pp. 167-178.
%H J. Estes and B. Wei, <a href="https://doi.org/10.1007/s10878-012-9515-6">Sharp bounds of the Zagreb indices of k-trees</a>, J. Comb. Optim., Vol. 27 (2014), pp. 271-291.
%H I. Gutman and K. Das, <a href="https://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_83-92.pdf">The first Zagreb index 30 years after</a>, MATCH Commun. Math. Comput. Chem., No. 50 (2004), pp. 83-92.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: 2*x*(1 + 3*x - 2*x^2)/(1-x)^3. [corrected by _Elmo R. Oliveira_, Nov 17 2024]
%F a(n) = 2*A028872(n+1).
%F a(n) = a(n-1) + 4*n + 2 for n > 1, a(1)=2.
%F From _Amiram Eldar_, Mar 02 2023: (Start)
%F Sum_{n>=1} 1/a(n) = 1/3 - cot(sqrt(3)*Pi)*Pi/(4*sqrt(3)).
%F Sum_{n>=1} (-1)^(n+1)/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/12. (End)
%F From _Elmo R. Oliveira_, Nov 17 2024: (Start)
%F E.g.f.: 2*(exp(x)*(x^2 + 3*x - 2) + 2).
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
%e a(4) = 2*(4^2 + 2*4 - 2) = 44 = 2*22 = 2*A028872(5); 2*44^3 + 12*44^2 = 193600 = 440^2 is a square.
%e The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
%t Table[2*n*(n + 2) - 4, {n, 50}] (* _Paolo Xausa_, Aug 08 2024 *)
%o (Magma) [ 2*(n^2+2*n-2) : n in [1..47] ];
%o (PARI) {m=4700; for(n=1, m, if(issquare(2*n^3+12*n^2), print1(n, ",")))}
%Y Cf. A028872 (n^2-3), A154560 ((n+3)^2*n/2+1), A144562 (triangle T(m,n) = 2m*n+m+n-1).
%Y Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).
%K nonn,easy,less
%O 1,1
%A _Vincenzo Librandi_, Dec 17 2008
%E Edited and extended by _Klaus Brockhaus_, Jan 12 2009