login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152715
Primes in A065049 which are not in A139370.
1
277, 337, 349, 373, 853, 1093, 1109, 1117, 1237, 1297, 1301, 1303, 1361, 1367, 1373, 1381, 1399, 1429, 1489, 1493, 1621, 1861, 1873, 1877, 1879, 2389, 3413, 3541, 4177, 4357, 4373, 4421, 4423, 4441, 4447, 4549, 4561, 4567, 4597, 4933, 4951, 4957, 5077, 5189, 5197, 5209, 5233, 5237
OFFSET
1,1
COMMENTS
In the notation of A139370, a prime p is in the sequence iff e(p)>o(p) and e(p)-o(p)== 4 or 5 (mod 6). [Vladimir Shevelev, Dec 12 2008]
MATHEMATICA
aQ[n_] := PrimeQ[n] && EvenQ[Count[IntegerDigits[n, 2], 1]] == OddQ[Mod[n, 3]] && Module[{d = Reverse[IntegerDigits[n, 2]]}, Total@d[[1;; -1;; 2]] >= Total@d[[2;; -1;; 2]]]; Select[Range[5300], aQ] (* Amiram Eldar, Dec 15 2018 *)
PROG
(PARI) isokp(p) = (p>2) && isprime(p) && ((hammingweight(p) % 2) != ((p % 3) % 2)); \\ A065049
isok0(n) = {my(irb = Vec(select(x->(x%2), Vecrev(binary(n)), 1))); #select(x->(x%2), irb) < #irb/2; } \\ A139370
isok(p) = isokp(p) && !isok0(p); \\ Michel Marcus, Dec 15 2018
CROSSREFS
Sequence in context: A045022 A108253 A108255 * A139654 A046504 A142542
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Dec 11 2008, Dec 12 2008
EXTENSIONS
Missing 853 and more terms from Michel Marcus, Dec 15 2018
STATUS
approved