The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152658 Beginnings of maximal chains of primes. 14
 5, 13, 29, 37, 43, 61, 89, 109, 131, 139, 227, 251, 269, 277, 293, 359, 389, 401, 449, 461, 491, 547, 569, 607, 631, 743, 757, 773, 809, 857, 887, 947, 971, 991, 1069, 1109, 1151, 1163, 1187, 1237, 1289, 1301, 1319, 1373, 1427, 1453, 1481, 1499, 1549, 1601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A sequence of consecutive primes prime(k), ..., prime(k+r), r >= 1, is called a chain of primes if i*prime(i) + (i+1)*prime(i+1) is prime (the linking prime for prime(i) and prime(i+1), cf. A119487) for i from k to k+r-1. A chain of primes prime(k), ..., prime(k+r) is maximal if it is not part of a longer chain, i.e. if neither (k-1)*prime(k-1) + k*prime(k) nor (k+r)*prime(k+r) + (k+r+1)*prime(k+r+1) is prime. A chain of primes has two or more members; a prime is called secluded if it is not member of a chain of primes (cf. A152657). LINKS Klaus Brockhaus, Table of n, a(n) for n=1..10000 EXAMPLE 3*prime(3) + 4*prime(4) = 3*5 + 4*7 = 43 is prime and 4*prime(4) + 5*prime(5) = 4*7 + 5*11 = 83 is prime, so 5, 7, 11 is a chain of primes. 2*prime(2) + 3*prime(3) = 2*3 + 3*5 = 21 is not prime and 5*prime(5) + 6*prime(6) = 5*11 + 6*13 = 133 is not prime, hence 5, 7, 11 is maximal and prime(3) = 5 is the beginning of a maximal chain. PROG (MAGMA) [ p: n in [1..253] | (n eq 1 or not IsPrime((n-1)*PreviousPrime(p) +n*p) ) and IsPrime((n)*p+(n+1)*NextPrime(p)) where p is NthPrime(n) ]; CROSSREFS Cf. A152117 (n*(n-th prime) + (n+1)*((n+1)-th prime)), A152657 (secluded primes), A119487 (primes of the form i*(i-th prime) + (i+1)*((i+1)-th prime), linking primes). Cf. A105454 - Zak Seidov, Feb 04 2016 Sequence in context: A207040 A309588 A268614 * A100877 A261580 A007521 Adjacent sequences:  A152655 A152656 A152657 * A152659 A152660 A152661 KEYWORD nonn AUTHOR Klaus Brockhaus, Dec 10 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 4 11:31 EDT 2020. Contains 335448 sequences. (Running on oeis4.)