|
|
A152612
|
|
Number of isomorphism classes of n-fold coverings of a connected graph with Betti number 3.
|
|
3
|
|
|
1, 8, 49, 681, 14721, 524137, 25471105, 1628116890, 131789656610, 13174980291658, 1593894406662866, 229496526010111571, 38782290669508033003, 7600987633299112125995, 1710169549495739472301076
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Number of orbits of the conjugacy action of Sym(n) on Sym(n)^3 [Kwak and Lee, 2001]. - Álvar Ibeas, Mar 24 2015
|
|
REFERENCES
|
J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161.
|
|
LINKS
|
|
|
MATHEMATICA
|
A057006 = Import["https://oeis.org/A057006/b057006.txt", "Table"][[All, 2]];
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[DivisorSum[j, # p[#]&] b[n - j], {j, 1, n}]/n]; b];
|
|
PROG
|
(Sage) [sum(p.aut()**2 for p in Partitions(n)) for n in range(1, 8)] # Álvar Ibeas, Mar 24 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(6) and a(7) from Geloun and Ramgoolan (2013) added by N. J. A. Sloane, Nov 21 2013
Name clarified and more terms added by Álvar Ibeas, Mar 24 2015
|
|
STATUS
|
approved
|
|
|
|