Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 28 2012 23:30:18
%S 1,2,3,1,4,2,2,5,3,3,3,1,1,6,4,4,4,4,2,2,2,2,2,7,5,5,5,5,5,3,3,3,3,3,
%T 3,3,3,3,1,1,1,1,1,8,6,6,6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,
%U 2,2,2,2,2,2,2,2,2,2,9,7,7,7,7,7,7,7,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
%N Triangle, read by rows, derived from Pascal's triangle (see g.f. and example for generating methods).
%H Paul D. Hanna, <a href="/A152547/b152547.txt">Table of rows 0..14 listed as n, a(n) for n = 0..7059</a>
%F G.f. of row n: Sum_{k=0..n} (x^binomial(n,k) - 1)/(x-1) = Sum_{k=0..binomial(n,n\2)-1} T(n,k)*x^k.
%F A152548(n) = Sum_{k=0..C(n,[n/2])-1} T(n,k)^2 = Sum_{k=0..[(n+1)/2]} C(n+1, k)*(n+1-2k)^3/(n+1).
%e The number of terms in row n is C(n,[n/2]).
%e Triangle begins:
%e [1],
%e [2],
%e [3,1],
%e [4,2,2],
%e [5,3,3,3,1,1],
%e [6,4,4,4,4,2,2,2,2,2],
%e [7,5,5,5,5,5,3,3,3,3,3,3,3,3,3,1,1,1,1,1],
%e [8,6,6,6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2],
%e [9,7,7,7,7,7,7,7,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1],
%e ...
%e ILLUSTRATION OF GENERATING METHOD.
%e Row n is derived from the binomial coefficients in the following way.
%e Place markers in an array so that the number of contiguous markers
%e in row k is C(n,k) and then count the markers along columns.
%e For example, row 6 of this triangle is generated from C(6,k) like so:
%e ------------------------------------------
%e 1: o - - - - - - - - - - - - - - - - - - -
%e 6: o o o o o o - - - - - - - - - - - - - -
%e 15:o o o o o o o o o o o o o o o - - - - -
%e 20:o o o o o o o o o o o o o o o o o o o o
%e 15:o o o o o o o o o o o o o o o - - - - -
%e 6: o o o o o o - - - - - - - - - - - - - -
%e 1: o - - - - - - - - - - - - - - - - - - -
%e ------------------------------------------
%e Counting the markers along the columns gives row 6 of this triangle:
%e [7,5,5,5,5,5,3,3,3,3,3,3,3,3,3,1,1,1,1,1].
%e Continuing in this way generates all the rows of this triangle.
%e ...
%e Number of repeated terms in each row of this triangle forms A008315:
%e 1;
%e 1;
%e 1, 1;
%e 1, 2;
%e 1, 3, 2;
%e 1, 4, 5;
%e 1, 5, 9, 5;
%e 1, 6, 14, 14;
%e 1, 7, 20, 28, 14;...
%o (PARI) {T(n,k)=polcoeff(sum(j=0,n,(x^binomial(n,j) - 1)/(x-1)),k)}
%o for(n=0,10, for(k=0, binomial(n,n\2)-1, print1(T(n,k),","));print(""))
%Y Cf. A152548 (row squared sums), A008315; A152545.
%K nonn,tabf
%O 0,2
%A _Paul D. Hanna_, Dec 14 2008