login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Padovan-Fibonacci triangle, read by rows, where the first column equals the Padovan spiral numbers (A134816), while the row sums equal the Fibonacci numbers (A000045).
3

%I #5 Jun 10 2012 12:32:14

%S 1,1,1,1,2,1,2,2,1,3,2,2,1,4,3,3,2,1,5,4,4,3,3,1,1,7,5,5,5,4,3,3,1,1,

%T 9,7,7,7,5,5,5,4,3,1,1,1,12,9,9,9,8,7,7,7,5,4,4,4,1,1,1,1,16,12,12,12,

%U 12,9,9,9,8,8,8,7,5,4,4,4,1,1,1,1,1,21,16,16,16,16,13,12,12,12,12,12,11,9,8

%N Padovan-Fibonacci triangle, read by rows, where the first column equals the Padovan spiral numbers (A134816), while the row sums equal the Fibonacci numbers (A000045).

%C The number of terms in each row equal the Padovan spiral numbers (A134816, with offset).

%H Paul D. Hanna, <a href="/A152545/b152545.txt">Table of n, a(n) for n = 0..261</a>

%F G.f. for row n: Sum_{k=0..A000931(n+5)-1} (x^{T(n-1,k)+T(n-2,k)} - 1)/(x-1) = Sum_{k=0..A000931(n+6)-1} T(n,k)*x^k for n>1 with T(0,0)=T(1,0)=1, where A000931 is the Padovan sequence.

%e Triangle begins:

%e [1],

%e [1],

%e [1,1],

%e [2,1],

%e [2,2,1],

%e [3,2,2,1],

%e [4,3,3,2,1],

%e [5,4,4,3,3,1,1],

%e [7,5,5,5,4,3,3,1,1],

%e [9,7,7,7,5,5,5,4,3,1,1,1],

%e [12,9,9,9,8,7,7,7,5,4,4,4,1,1,1,1],

%e [16,12,12,12,12,9,9,9,8,8,8,7,5,4,4,4,1,1,1,1,1],

%e [21,16,16,16,16,13,12,12,12,12,12,11,9,8,8,8,5,5,5,5,4,1,1,1,1,1,1,1],

%e [28,21,21,21,21,20,16,16,16,16,16,16,13,13,12,12,12,12,11,11,8,6,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1],

%e [37,28,28,28,28,28,22,21,21,21,21,21,20,20,20,20,18,16,16,16,14,13,12,12,12,12,12,11,6,6,6,6,6,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1],

%e [49,37,37,37,37,37,33,28,28,28,28,28,28,28,28,28,27,22,22,21,21,21,20,20,20,20,20,18,17,17,16,16,14,12,12,12,12,7,6,6,6,6,6,6,6,6,6,6,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],

%e ...

%e ILLUSTRATION OF RECURRENCE.

%e Start out with row 0 and row 1 consisting of a single '1'.

%e To obtain any given row of this irregular triangle, first

%e sum the prior two rows term-by-term; for rows 7 and 8 we get:

%e [5,4,4,3,3,1,1] + [7,5,5,5,4,3,3,1,1] = [12,9,9,8,7,4,4,1,1].

%e Place markers in an array so that the number of contiguous markers

%e in each row correspond to the term-by-term sums like so:

%e --------------------------

%e 12:o o o o o o o o o o o o

%e 9: o o o o o o o o o - - -

%e 9: o o o o o o o o o - - -

%e 8: o o o o o o o o - - - -

%e 7: o o o o o o o - - - - -

%e 4: o o o o - - - - - - - -

%e 4: o o o o - - - - - - - -

%e 1: o - - - - - - - - - - -

%e 1: o - - - - - - - - - - -

%e --------------------------

%e Then count the markers by columns to obtain the desired row;

%e here, the number of markers in each column yields row 9:

%e [9,7,7,7,5,5,5,4,3,1,1,1].

%e Continuing in this way generates all the rows of this triangle.

%o (PARI) {T(n,k)=local(G000931=(1-x^2)/(1-x^2-x^3+x*O(x^(n+6))));if(n<0,0,if(n<2&k==0,1, polcoeff(sum(j=0,polcoeff(G000931,n+5)-1,(x^(T(n-1,j)+T(n-2,j)) - 1)/(x-1)),k) ))};

%o /* To print, use Padovan g.f. to get the number of terms in row n: */

%o for(n=0,10,for(k=0,polcoeff((1-x^2)/(1-x^2-x^3+x*O(x^(n+6))),n+6)-1,print1(T(n,k),","));print(""))

%Y Cf. A134816, A000045, A000931; A152546 (row squared sums).

%K nonn,tabf

%O 0,5

%A _Paul D. Hanna_, Dec 13 2008