login
Triangle read by rows, A027293 * (A152537 * 0^(n-k))
2

%I #3 Mar 30 2012 17:25:33

%S 1,1,1,2,1,1,3,2,1,2,5,3,2,2,4,7,5,3,4,4,9,11,7,5,6,8,9,18,15,11,7,10,

%T 12,18,18,37,22,15,11,14,20,27,36,37,74,30,22,15,22,28,45,54,74,74,

%U 148,42,30,22,30,44,63,90,111,148,148,296

%N Triangle read by rows, A027293 * (A152537 * 0^(n-k))

%C Row sums = 2^n.

%C Right border = A152537, left border = A000041.

%F Triangle read by rows, M*Q. M = A027293 as an infinite lower triangular matrix with the partition numbers (A000041) in every column. Q = a matrix with A152537 as the main diagonal and the rest zeros.

%e First few rows of the triangle =

%e 1;

%e 1, 1;

%e 2, 1, 1;

%e 3, 2, 1, 2;

%e 5, 3, 2, 2, 4;

%e 7, 5, 3, 4, 4, 9;

%e 11, 7, 5, 6, 8, 9, 18;

%e 15, 11, 7, 10, 12, 18, 18, 37;

%e 22, 15, 11, 14, 20, 27, 36, 37, 74;

%e 30, 22, 15, 22, 28, 45, 54, 74, 74, 148;

%e 42, 30, 22, 30, 44, 63, 90, 111, 148, 148, 296;

%e 56, 42, 30, 44, 60, 99, 126, 185, 222, 296, 296, 592;

%e 77, 56, 42, 60, 88, 135, 198, 259, 370, 444, 592, 592, 1183;

%e ...

%e Row 3 = (3, 2, 1, 2) = termwise products of (3, 2, 1, 1) and (1, 1, 1, 2).

%Y Cf. A152537, A027293, A000041

%K nonn,tabl

%O 0,4

%A _Gary W. Adamson_, Dec 10 2008