login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1/4 the number of permutations of 3 indistinguishable copies of 1..n with exactly 3 local maxima.
1

%I #9 Jul 19 2020 07:21:50

%S 0,1,231,21490,1476084,90050080,5228286336,297239712256,

%T 16749407726592,940343619493888,52712719000338432,2953100593082269696,

%U 165399775808105742336,9262957817232621568000,518737995604927325405184,29049593918675470746910720,1626782962901824260072800256

%N 1/4 the number of permutations of 3 indistinguishable copies of 1..n with exactly 3 local maxima.

%H Andrew Howroyd, <a href="/A152500/b152500.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (108,-3840,58752,-401664,1244160,-1433600).

%F From _Colin Barker_, Jul 19 2020: (Start)

%F G.f.: x^2*(1 + 123*x + 382*x^2 - 16548*x^3 - 15440*x^4) / ((1 - 4*x)^3*(1 - 20*x)^2*(1 - 56*x)).

%F a(n) = 108*a(n-1) - 3840*a(n-2) + 58752*a(n-3) - 401664*a(n-4) + 1244160*a(n-5) - 1433600*a(n-6) for n>6.

%F (End)

%o (PARI) \\ PeaksBySig defined in A334774.

%o a(n) = {PeaksBySig(vector(n,i,3), [2])[1]/4} \\ _Andrew Howroyd_, May 12 2020

%o (PARI) concat(0, Vec(x^2*(1 + 123*x + 382*x^2 - 16548*x^3 - 15440*x^4) / ((1 - 4*x)^3*(1 - 20*x)^2*(1 - 56*x)) + O(x^19))) \\ _Colin Barker_, Jul 19 2020

%Y Cf. A152499, A334774.

%K nonn,easy

%O 1,3

%A _R. H. Hardin_, Dec 06 2008

%E Terms a(10) and beyond from _Andrew Howroyd_, May 12 2020