login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of digits in factorial numbers of the form: (n!^n!)!.
0

%I #9 Jul 06 2019 15:37:28

%S 1,2,197573,43600856616158353989522412378215477

%N Number of digits in factorial numbers of the form: (n!^n!)!.

%C (1!^1!)!=1 -> 1 digit; (2!^2!)!=24 -> 2 digits; (3!^3!)!=veryverylargenumber -> 197573 digits; (4!^4!)!=?!...

%C From _Jon E. Schoenfield_, Dec 21 2008: (Start)

%C (3!^3!)! = (6^6)! = 46656! = 6.8964...*10^197572

%C (4!^4!)! = (24^24)! = 1333735776850284124449081472843776! = 1.1463...*10^43600856616158353989522412378215476. (End)

%t a[n_]:=Length[IntegerDigits[(n!^n!)! ]];

%K nonn,base

%O 1,2

%A _Vladimir Joseph Stephan Orlovsky_, Dec 05 2008

%E a(4) from _Jon E. Schoenfield_, Dec 21 2008