login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest of five consecutive primes whose sum is a prime.
14

%I #21 Aug 21 2013 02:47:20

%S 5,7,11,13,19,29,31,43,53,59,67,73,79,107,109,113,127,137,149,151,157,

%T 163,179,191,211,223,229,263,269,307,311,349,353,359,379,383,401,409,

%U 419,433,443,449,461,467,479,521,523,541,557,569,571,577,599,613,619

%N Smallest of five consecutive primes whose sum is a prime.

%C Surprisingly many terms are also in A073681. - _Zak Seidov_, Dec 17 2012

%H Zak Seidov, <a href="/A152468/b152468.txt">Table of n, a(n) for n = 1..1000</a>

%t lst={};Do[p0=Prime[n];p1=Prime[n+1];p2=Prime[n+2];p3=Prime[n+3];p4=Prime[n+4];If[PrimeQ[p=p0+p1+p2+p3+p4],AppendTo[lst,p0]],{n,6!}];lst

%t Transpose[Select[Partition[Prime[Range[500]], 5, 1], PrimeQ[Total[#]] &]][[1]] (* _Harvey P. Dale_, Jun 05 2013 *)

%t Prime[Select[Range[150], PrimeQ[Sum[Prime[# + i], {i, 0, 4}]] &]] (* _Bruno Berselli_, Aug 21 2013 *)

%o (PARI) {a=2; b=3; c=5; d=7; e=11; for(n=1,100, s=a+b+c+d+e;

%o if(isprime(s), print1(a", ")); a=b; b=c; c=d; d=e; e=nextprime(e+2))} /* _Zak Seidov_, Dec 17 2012 */

%Y Cf. A073681, A034965, A180948, A189571, A180950, A226380.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Dec 05 2008

%E More cross references from _Harvey P. Dale_, Jun 05 2013