Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Nov 24 2023 12:12:48
%S 1,2,2,4,2,4,6,8,2,4,6,8,10,12,14,16,2,4,6,8,10,12,14,16,18,20,22,24,
%T 26,28,30,32,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,
%U 42,44,46,48,50,52,54,56,58,60,62,64,2,4,6,8,10,12,14,16,18,20
%N A variation of the Josephus problem, removing every other person, starting with person 1; a(n) is the last person remaining.
%C Begin with n people standing in a circle, numbered clockwise 1 through n. Until only one person remains, go around the circle clockwise, removing every other person, starting by removing person 1. a(n) is the number of the last person remaining.
%C Apparently a(n) = 2*A062050(n-1), n > 1. - _Paul Curtz_, May 30 2011
%H Alois P. Heinz, <a href="/A152423/b152423.txt">Table of n, a(n) for n = 1..8192</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JosephusProblem.html">Josephus Problem</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Josephus_problem">Josephus problem</a>
%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>
%F a(1)=1, a(2)=2; for n > 2, a(n)=2 if n < a(n-1) + 2, otherwise a(n) = a(n-1) + 2.
%F a(n)=n if n is a power of 2, otherwise a(n)=2*(n-2^m) where m is the exponent of the nearest power of 2 below n. - _Nicolas Patrois_, Apr 19 2021
%F a(n) = 2*n - 2^ceiling(log_2(n)). - _Alois P. Heinz_, Nov 22 2023
%e From _Omar E. Pol_, Dec 16 2013: (Start)
%e It appears that this is also an irregular triangle with row lengths A011782 as shown below:
%e 1;
%e 2;
%e 2,4;
%e 2,4,6,8;
%e 2,4,6,8,10,12,14,16;
%e 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32;
%e 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40, 42,44,46,48,50,52,54,56,58,60,62,64;
%e Right border gives A000079.
%e (End)
%p a:= n-> 2*n - 2^ceil(log[2](n)):
%p seq(a(n), n=1..74); # _Alois P. Heinz_, Nov 22 2023
%t A152423[n_]:=2n-2^Ceiling[Log2[n]];Array[A152423,100] (* _Paolo Xausa_, Nov 23 2023 *)
%o (PHP) function F($in){ $a[1] = 1; if($in == 1){ return $a;} $temp =2; for($i=2;$i<=$in;$i++){ $temp+=2; if($temp>$i){ $temp = 2 ; } $answer[] = $temp; } return $answer; } #change $n value for the result $n=5; #sequence store in $answer by using $a = F($n); #to display a(n) echo $a[n];
%o (Python) m=len(bin(n))-3; print(n if 2**m==n else 2*(n-2**m)) # _Nicolas Patrois_, Apr 19 2021
%Y The Index to the OEIS lists 21 entries under "Josephus problem". - _N. J. A. Sloane_, Dec 04 2008
%Y Cf. A000079, A011782, A062050.
%K easy,nonn
%O 1,2
%A Suttapong Wara-asawapati (retsam_krad(AT)hotmail.com), Dec 03 2008
%E Edited by _Jon E. Schoenfield_, Feb 29 2020