OFFSET
0,2
COMMENTS
The row sums are: {0, -5, -10, -7, 12, 55, 130, 245, 408, 627, 910, ...}.
LINKS
G. C. Greubel, Rows n = 0..50 of triangle, flattened
FORMULA
T(n, k) = 4*( n*(n-1) - k*(k-1) ) = 4*( (n-k)*(n+k-1) ) with n and k ranging over half-integer steps.
T(n, k) = n*(n-2) - (k-n)*(k-n-2), with 0 <= k <= 2*n, n >= 0. - G. C. Greubel, Dec 04 2019
EXAMPLE
Irregular triangle begins as:
0;
-4, -1, 0;
-8, -3, 0, 1, 0;
-12, -5, 0, 3, 4, 3, 0;
-16, -7, 0, 5, 8, 9, 8, 5, 0;
-20, -9, 0, 7, 12, 15, 16, 15, 12, 7, 0;
-24, -11, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0;
-28, -13, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0;
-32, -15, 0, 13, 24, 33, 40, 45, 48, 49, 48, 45, 40, 33, 24, 13, 0;
MAPLE
seq(seq( n*(n-2) - (k-n)*(k-n-2), k=0..2*n), n=0..10); # G. C. Greubel, Dec 04 2019
MATHEMATICA
Table[4*(n*(n-1) - k*(k-1)), {n, 0, 5, 1/2}, {k, -n, n, 1/2}]//FlattenTable[n*(n-2) - (k-n)*(k-n-2), {n, 0, 5}, {k, 0, 2*n}]//Flatten (* G. C. Greubel, Dec 04 2019 *)
PROG
(PARI) T(n, k) = n*(n-2) - (k-n)*(k-n-2); \\ G. C. Greubel, Dec 04 2019
(Magma) [n*(n-2) - (k-n)*(k-n-2): k in [0..2*n], n in [0..10]]; // G. C. Greubel, Dec 04 2019
(Sage) [[n*(n-2) - (k-n)*(k-n-2) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Dec 04 2019
(GAP) Flat(List([0..10], n-> List([0..2*n], k-> n*(n-2) - (k-n)*(k-n-2) ))); # G. C. Greubel, Dec 04 2019
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Roger L. Bagula and Gary W. Adamson, Dec 03 2008
EXTENSIONS
Keyword tabf by Michel Marcus, Apr 08 2013
New name from G. C. Greubel, Dec 04 2019
STATUS
approved