login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A152420
Irregular triangle read by rows: T(n,k) = n*(n-2) - (k-n)*(k-n-2), with 0 <= k <= 2*n.
2
0, -4, -1, 0, -8, -3, 0, 1, 0, -12, -5, 0, 3, 4, 3, 0, -16, -7, 0, 5, 8, 9, 8, 5, 0, -20, -9, 0, 7, 12, 15, 16, 15, 12, 7, 0, -24, -11, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, -28, -13, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, -32, -15, 0, 13, 24, 33, 40, 45, 48, 49, 48, 45, 40, 33, 24, 13, 0
OFFSET
0,2
COMMENTS
The row sums are: {0, -5, -10, -7, 12, 55, 130, 245, 408, 627, 910, ...}.
FORMULA
T(n, k) = 4*( n*(n-1) - k*(k-1) ) = 4*( (n-k)*(n+k-1) ) with n and k ranging over half-integer steps.
T(n, k) = n*(n-2) - (k-n)*(k-n-2), with 0 <= k <= 2*n, n >= 0. - G. C. Greubel, Dec 04 2019
EXAMPLE
Irregular triangle begins as:
0;
-4, -1, 0;
-8, -3, 0, 1, 0;
-12, -5, 0, 3, 4, 3, 0;
-16, -7, 0, 5, 8, 9, 8, 5, 0;
-20, -9, 0, 7, 12, 15, 16, 15, 12, 7, 0;
-24, -11, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0;
-28, -13, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0;
-32, -15, 0, 13, 24, 33, 40, 45, 48, 49, 48, 45, 40, 33, 24, 13, 0;
MAPLE
seq(seq( n*(n-2) - (k-n)*(k-n-2), k=0..2*n), n=0..10); # G. C. Greubel, Dec 04 2019
MATHEMATICA
Table[4*(n*(n-1) - k*(k-1)), {n, 0, 5, 1/2}, {k, -n, n, 1/2}]//FlattenTable[n*(n-2) - (k-n)*(k-n-2), {n, 0, 5}, {k, 0, 2*n}]//Flatten (* G. C. Greubel, Dec 04 2019 *)
PROG
(PARI) T(n, k) = n*(n-2) - (k-n)*(k-n-2); \\ G. C. Greubel, Dec 04 2019
(Magma) [n*(n-2) - (k-n)*(k-n-2): k in [0..2*n], n in [0..10]]; // G. C. Greubel, Dec 04 2019
(Sage) [[n*(n-2) - (k-n)*(k-n-2) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Dec 04 2019
(GAP) Flat(List([0..10], n-> List([0..2*n], k-> n*(n-2) - (k-n)*(k-n-2) ))); # G. C. Greubel, Dec 04 2019
CROSSREFS
Cf. A152439.
Sequence in context: A245099 A176219 A231350 * A050465 A134575 A095831
KEYWORD
sign,tabf
AUTHOR
EXTENSIONS
Keyword tabf by Michel Marcus, Apr 08 2013
New name from G. C. Greubel, Dec 04 2019
STATUS
approved