The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152406 Triangle T, read by rows, where column k of T = column 0 of matrix power T^(k+1) for k>0, with column 0 of T = column 1 of T^2 (shifted). 4
 1, 1, 1, 4, 2, 1, 26, 10, 3, 1, 224, 74, 18, 4, 1, 2346, 698, 150, 28, 5, 1, 28516, 7838, 1546, 260, 40, 6, 1, 391042, 100850, 18642, 2916, 410, 54, 7, 1, 5936376, 1451454, 254690, 37712, 4980, 606, 70, 8, 1, 98435034, 22985130, 3861782, 547240, 68910 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA Column k of T^(j+1) = column j of T^(k+1) for all j>=0, k>=0. Column k: T(n,k) = Sum_{j=0..n-k} T(n-k,j)*T(j+k-1,k-1) for n>=k>0. Column 0: T(n,0) = Sum_{j=1..n} T(n,j)*T(j,1) for n>=0. EXAMPLE Triangle T begins: 1; 1, 1; 4, 2, 1; 26, 10, 3, 1; 224, 74, 18, 4, 1; 2346, 698, 150, 28, 5, 1; 28516, 7838, 1546, 260, 40, 6, 1; 391042, 100850, 18642, 2916, 410, 54, 7, 1; 5936376, 1451454, 254690, 37712, 4980, 606, 70, 8, 1; 98435034, 22985130, 3861782, 547240, 68910, 7934, 854, 88, 9, 1;... where column k of T = column 0 of T^(k+1) for k>0 and column 0 of T = column 1 of T^2 (shifted). Amazingly, column k of T^(j+1) = column j of T^(k+1) for j>=0, k>=0. Matrix square T^2 begins: 1; 2, 1; 10, 4, 1; 74, 26, 6, 1; 698, 224, 48, 8, 1; 7838, 2346, 474, 76, 10, 1; 100850, 28516, 5492, 848, 110, 12, 1; 1451454, 391042, 72334, 10804, 1370, 150, 14, 1;... where column 0 of T^2 = column 1 of T, and column 2 of T^2 = column 1 of T^3. Matrix cube T^3 begins: 1; 3, 1; 18, 6, 1; 150, 48, 9, 1; 1546, 474, 90, 12, 1; 18642, 5492, 1032, 144, 15, 1; 254690, 72334, 13362, 1884, 210, 18, 1; 3861782, 1060412, 192192, 27040, 3090, 288, 21, 1;... where column 0 of T^3 = column 2 of T, and column 3 of T^3 = column 2 of T^4. Matrix power T^4 begins: 1; 4, 1; 28, 8, 1; 260, 76, 12, 1; 2916, 848, 144, 16, 1; 37712, 10804, 1884, 232, 20, 1; 547240, 153840, 27040, 3488, 340, 24, 1; 8751688, 2410328, 423240, 55840, 5780, 468, 28, 1;... where column 0 of T^4 = column 3 of T, and column 1 of T^4 = column 3 of T^2. PROG (PARI) T(n, k)=if(k>n || n<0, 0, if(k==n, 1, if(k==0, sum(j=1, n, T(n, j)*T(j, 1)), sum(j=0, n-k, T(n-k, j)*T(j+k-1, k-1))); )) CROSSREFS Cf. columns: A152407, A152408, A152409, A152410. Sequence in context: A111559 A224798 A239894 * A105623 A158835 A236961 Adjacent sequences:  A152403 A152404 A152405 * A152407 A152408 A152409 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Dec 05 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 11:41 EDT 2021. Contains 346273 sequences. (Running on oeis4.)