login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152406
Triangle T, read by rows, where column k of T = column 0 of matrix power T^(k+1) for k>0, with column 0 of T = column 1 of T^2 (shifted).
4
1, 1, 1, 4, 2, 1, 26, 10, 3, 1, 224, 74, 18, 4, 1, 2346, 698, 150, 28, 5, 1, 28516, 7838, 1546, 260, 40, 6, 1, 391042, 100850, 18642, 2916, 410, 54, 7, 1, 5936376, 1451454, 254690, 37712, 4980, 606, 70, 8, 1, 98435034, 22985130, 3861782, 547240, 68910
OFFSET
0,4
FORMULA
Column k of T^(j+1) = column j of T^(k+1) for all j>=0, k>=0.
Column k: T(n,k) = Sum_{j=0..n-k} T(n-k,j)*T(j+k-1,k-1) for n>=k>0.
Column 0: T(n,0) = Sum_{j=1..n} T(n,j)*T(j,1) for n>=0.
EXAMPLE
Triangle T begins:
1;
1, 1;
4, 2, 1;
26, 10, 3, 1;
224, 74, 18, 4, 1;
2346, 698, 150, 28, 5, 1;
28516, 7838, 1546, 260, 40, 6, 1;
391042, 100850, 18642, 2916, 410, 54, 7, 1;
5936376, 1451454, 254690, 37712, 4980, 606, 70, 8, 1;
98435034, 22985130, 3861782, 547240, 68910, 7934, 854, 88, 9, 1;...
where column k of T = column 0 of T^(k+1) for k>0
and column 0 of T = column 1 of T^2 (shifted).
Amazingly, column k of T^(j+1) = column j of T^(k+1) for j>=0, k>=0.
Matrix square T^2 begins:
1;
2, 1;
10, 4, 1;
74, 26, 6, 1;
698, 224, 48, 8, 1;
7838, 2346, 474, 76, 10, 1;
100850, 28516, 5492, 848, 110, 12, 1;
1451454, 391042, 72334, 10804, 1370, 150, 14, 1;...
where column 0 of T^2 = column 1 of T,
and column 2 of T^2 = column 1 of T^3.
Matrix cube T^3 begins:
1;
3, 1;
18, 6, 1;
150, 48, 9, 1;
1546, 474, 90, 12, 1;
18642, 5492, 1032, 144, 15, 1;
254690, 72334, 13362, 1884, 210, 18, 1;
3861782, 1060412, 192192, 27040, 3090, 288, 21, 1;...
where column 0 of T^3 = column 2 of T,
and column 3 of T^3 = column 2 of T^4.
Matrix power T^4 begins:
1;
4, 1;
28, 8, 1;
260, 76, 12, 1;
2916, 848, 144, 16, 1;
37712, 10804, 1884, 232, 20, 1;
547240, 153840, 27040, 3488, 340, 24, 1;
8751688, 2410328, 423240, 55840, 5780, 468, 28, 1;...
where column 0 of T^4 = column 3 of T,
and column 1 of T^4 = column 3 of T^2.
PROG
(PARI) T(n, k)=if(k>n || n<0, 0, if(k==n, 1, if(k==0, sum(j=1, n, T(n, j)*T(j, 1)), sum(j=0, n-k, T(n-k, j)*T(j+k-1, k-1))); ))
CROSSREFS
Cf. columns: A152407, A152408, A152409, A152410.
Sequence in context: A111559 A224798 A239894 * A105623 A364870 A158835
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 05 2008
STATUS
approved