login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes p such that the multiplicative order of 2 modulo p is (p-1)/11.
2

%I #13 Nov 23 2024 11:11:24

%S 331,1013,4643,12101,12893,16061,17117,23893,25763,25939,28403,30493,

%T 32429,32957,34739,36389,38149,39139,42043,44771,45541,46861,53923,

%U 57773,59621,60611,81533,85229,87187,89123,92357,96493,100981,105227

%N Primes p such that the multiplicative order of 2 modulo p is (p-1)/11.

%H Klaus Brockhaus, <a href="/A152311/b152311.txt">Table of n, a(n) for n=1..1000</a>

%t okQ[p_] := MultiplicativeOrder[2, p] == (p-1)/11;

%t Select[Prime[Range[20000]], okQ] (* _Jean-François Alcover_, Nov 23 2024 *)

%o (Magma) [ p: p in PrimesUpTo(105227) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,11) where R is ResidueClassRing(p) ];

%o (PARI) Vec(select(p->((p!=2) && (znorder(Mod(2, p)) == (p-1)/11)), primes(20000))) \\ _Michel Marcus_, Feb 09 2015

%Y Cf. A115591, A001133, A001134, A001135, A001136.

%K nonn

%O 1,1

%A _Klaus Brockhaus_, Dec 02 2008