login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152304 Marsaglia-Zaman type binet solution rationalized: f(n)=(11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n; a(n)=Mod[Floor[f(n)],10]. 0

%I #2 Mar 30 2012 17:34:28

%S 1,0,1,3,5,8,5,5,2,1,0,2,0,2,2,7,9,2,8,7,5,6,7,6,3,6,8,2,2,7,9,2,4,5,

%T 5,9,2,3,7,5,4,2,5,0,2,9,5,0,0,7,6,8,7,8,2,5,8,5,0,3,5,2,7,4,3,2,6,9,

%U 7,8,3,1,9,9,3,1

%N Marsaglia-Zaman type binet solution rationalized: f(n)=(11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n; a(n)=Mod[Floor[f(n)],10].

%C The binet solution came from Mathematica:

%C f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == a[n - 1] + a[n - 2] + a[n - 1]/10,a[0] == 1, a[1] == 1}, a[n], n][[1]] // FullSimplify].

%C I used coefficients{1/2,2/3} on the golden ration like roots to get my function.

%D Ivars Peterson, The Jungles of Randomness, 1998, John Wiley and Sons, Inc., page 207

%F f(n)=(11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n;

%F a(n)=Mod[Floor[f(n)],10].

%t g[n_] := (11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n;

%t Table[Mod[Floor[FullSimplify[Expand[g[n]]]], 10], {n, 0, 76}]

%K nonn

%O 0,4

%A _Roger L. Bagula_, Dec 02 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 08:32 EDT 2024. Contains 376007 sequences. (Running on oeis4.)