login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152284
E.g.f.: A(x) = Sum_{n>=0} x^n*faq(n,x)/n!, where faq(n,q) = q-factorial of n.
0
1, 1, 1, 4, 9, 56, 295, 1674, 14273, 121960, 1101231, 11444390, 138031729, 1718676948, 22808373575, 328417372906, 5142373476225, 85771047566384, 1495194316452703, 27487818332136270, 535137393073675121
OFFSET
0,4
COMMENTS
(n-1) divides a(n) for n>1.
LINKS
Eric Weisstein, q-Factorial from MathWorld.
FORMULA
E.g.f. A(x) special values: A(-1)= 0; radius of convergence = 1.
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 9*x^4/4! + 56*x^5/5! +...
A(x) = 1 + x + x^2*faq(2,x)/2! + x^3*faq(3,x)/3! + x^4*faq(4,x)/4! +...
A(x) = 1 + x + x^2*(1+x)/2! + x^3*(1+x)(1+x+x^2)/3! + x^4*(1+x)(1+x+x^2)(1+x+x^2+x^3)/4! +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1):
faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
PROG
(PARI) {a(n)=local(A=sum(k=0, n, x^k/k!*prod(j=1, k, (x^j-1)/(x-1)))); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A203464 A360514 A358446 * A109717 A197859 A197997
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 02 2008
STATUS
approved