Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Apr 07 2016 02:11:37
%S 1,1,4,43,1076,58746,6772360,1619251271,794625904404,795206398610710,
%T 1615965837952912216,6649024230536100958062,
%U 55277445682961080929146824,927088288759058912165347148404,31329256772332779793923906186541200
%N Coefficients in a q-analog of the LambertW function at q=2: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,2) where faq(n,q) = q-factorial of n.
%F G.f. satisfies: A(x) = e_q( x*A(x), 2) and A( x/e_q(x,2) ) = e_q(x,2) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
%F G.f.: A(x) = (1/x)*Series_Reversion( x/e_q(x,2) ).
%F G.f. satisfies: A(x) = exp( Sum_{n>=1} -A(x)^n*(-x)^n/(n*(2^n-1)) ). [_Paul D. Hanna_, Oct 24 2011]
%F a(n) = Sum_{k=0..n(n-1)/2} A152290(n,k)*2^k.
%F a(n) = faq(n,2)*Sum_{pi} n!/((n-k+1)!*Product_{i=1..n} (e(i)!*faq(i,2)^e(i))), where pi runs through all nonnegative integer solutions of e(1)+2*e(2)+...+n*e(n)=n and k=e(1)+e(2)+...+e(n). [_Vladeta Jovovic_, Dec 03 2008]
%e G.f.: A(x) = 1 + x + 4/3*x^2 + 43/21*x^3 + 1076/315*x^4 + 58746/9765*x^5 +...
%e G.f. satisfies: A(x) = e_q( x*A(x), 2) where the q-exponential series is:
%e e_q(x,q) = 1 + x + x^2/faq(2,q) + x^3/faq(3,q) +...+ x^n/faq(n,q) +...
%e The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1):
%e faq(0,q)=1, faq(1,q)=1, faq(2,q)=(1+q), faq(3,q)=(1+q)*(1+q+q^2), faq(4,q)=(1+q)*(1+q+q^2)*(1+q+q^2+q^3), ...
%e Also, the logarithm of the g.f. begins:
%e log(A(x)) = A(x)*x/(2-1) - A(x)^2*x^2/(2*(2^2-1)) + A(x)^3*x^3/(3*(2^3-1)) - A(x)^4*x^4/(4*(2^4-1)) + A(x)^5*x^5/(5*(2^5-1)) +...
%o (PARI) {a(n,q=2)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))),LW_q=serreverse(x/e_q+x^2*O(x^n))/x); polcoeff(LW_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))}
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,-(A+x*O(x^n))^m*(-x)^m/(m*(2^m-1)))));prod(k=1,n,2^k-1)*polcoeff(A,n)}
%Y Cf. A152290, A152283 (q=3).
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 02 2008