login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(2*n) = 2^n; a(2*n+1) = -(2^(n+1)).
25

%I #26 Jul 19 2024 19:06:23

%S 1,-2,2,-4,4,-8,8,-16,16,-32,32,-64,64,-128,128,-256,256,-512,512,

%T -1024,1024,-2048,2048,-4096,4096,-8192,8192,-16384,16384,-32768,

%U 32768,-65536,65536,-131072,131072,-262144,262144,-524288,524288,-1048576,1048576

%N a(2*n) = 2^n; a(2*n+1) = -(2^(n+1)).

%C Ratios of successive terms are -2,-1,-2,-1,-2,-1,-2,-1,... - _Philippe Deléham_, Dec 12 2008

%H Paolo Xausa, <a href="/A152166/b152166.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,2).

%F G.f.: (1 - 2*x)/(1 - 2*x^2).

%F a(n) = 2*a(n-2); a(0)=1, a(1)=-2.

%F a(n) = Sum_{k=0..n} A147703(n,k)*(-3)^k.

%F E.g.f.: cosh(sqrt(2)*x) - sqrt(2)*sinh(sqrt(2)*x). - _Stefano Spezia_, Feb 05 2023

%t LinearRecurrence[{0, 2}, {1, -2}, 50] (* _Paolo Xausa_, Jul 19 2024 *)

%Y Cf. A000079, A016116, A147703.

%Y The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - _N. J. A. Sloane_, Jul 14 2022

%K sign,easy

%O 0,2

%A _Philippe Deléham_, Nov 27 2008