%I #12 Sep 08 2022 08:45:39
%S 8,21,43,83,133,197,271,359,497,631,785,977,1135,1307,1553,1851,2101,
%T 2371,2693,2953,3271,3647,4045,4561,5051,5407,5777,6157,6551,7327,
%U 8129,8713,9247,9941,10651,11245,12003,12707,13433,14259,14941,15815,16705
%N a(n) = n*(n-th prime) + (n+1)*((n+1)-th prime).
%C a(n) = A033286(n) + A033286(n+1).
%H Klaus Brockhaus, <a href="/A152117/b152117.txt">Table of n, a(n) for n=1..1000</a>
%e 5*(fifth prime) + 6*(sixth prime) = 5*11 + 6*13 = 55 + 78 = 133.
%t Total/@Partition[Times@@@Table[{n,Prime[n]},{n,50}],2,1] (* _Harvey P. Dale_, Aug 13 2019 *)
%o (Magma) [ n*NthPrime(n)+(n+1)*NthPrime(n+1): n in [1..43] ];
%o (PARI) a(n) = n*prime(n) + (n+1)*prime(n+1); \\ _Michel Marcus_, Feb 05 2016
%Y Cf. A000040 (prime numbers), A033286 (n*(n-th prime)), A033287 (first differences of A033286), A119487 (primes in this sequence).
%K nonn
%O 1,1
%A _Klaus Brockhaus_, Dec 10 2008