login
a(n) = 2^n*Product_{k=1..floor((n-1)/2)} (1 + 2*cos(k*Pi/n)^2 + 4*cos(k*Pi/n)^4).
0

%I #15 Jan 07 2021 05:06:17

%S 1,2,4,14,48,158,532,1778,5952,19922,66676,223166,746928,2499950,

%T 8367268,28005026,93732096,313718882,1050008932,3514352558,

%U 11762446512,39368602238,131765686708,441016322834,1476070150464,4940368363442

%N a(n) = 2^n*Product_{k=1..floor((n-1)/2)} (1 + 2*cos(k*Pi/n)^2 + 4*cos(k*Pi/n)^4).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,2,-1).

%F From _Colin Barker_, Jan 05 2014: (Start)

%F a(n) = 2*a(n-1) + 4*a(n-2) + 2*a(n-3) - a(n-4) for n > 5.

%F G.f.: (x^4-4*x^3-4*x^2+1) / (x^4-2*x^3-4*x^2-2*x+1). (End)

%t m = 2; l = 4; b = Table[2^n*Product[1 + m*Cos[k*Pi/n]^2 + l*Cos[k*Pi/n]^4, {k, 1, (n - 1)/2}], {n, 0, 30}]; FullSimplify[ExpandAll[%]] Round[b]

%o (PARI) Vec((x^4-4*x^3-4*x^2+1)/(x^4-2*x^3-4*x^2-2*x+1) + O(x^100)) \\ _Colin Barker_, Jan 05 2014

%K nonn,easy

%O 0,2

%A _Roger L. Bagula_, Nov 24 2008