login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the distinct prime factors of 2^n-1.
2

%I #10 Jan 15 2021 02:18:12

%S 0,0,3,7,8,31,10,127,25,80,45,112,28,8191,173,189,282,131071,102,

%T 524287,91,471,798,178528,286,2433,10925,262737,320,3425,534,

%U 2147483647,65819,599598,174765,123150,266,616318400,699053,129646,61789,164524720,5936

%N Sum of the distinct prime factors of 2^n-1.

%H Robert Israel, <a href="/A152057/b152057.txt">Table of n, a(n) for n = 0..500</a>

%F a(n) = A008472(A000225(n)). - _Robert Israel_, Jan 14 2021

%p sopf:= n -> convert(numtheory:-factorset(n),`+`):

%p seq(sopf(2^n-1),n=0..100); # _Robert Israel_, Jan 14 2021

%t Table[Sum[FactorInteger[2^n - 1][[m]][[1]], {m, 1, Length[FactorInteger[2^n - 1]]}], {n, 0, 50}]

%Y Cf. A000225, A008472, A046800, A075708.

%Y Row sums of A060443.

%K nonn

%O 0,3

%A _Roger L. Bagula_, Nov 22 2008

%E Edited by _N. J. A. Sloane_, Nov 26 2008