login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3/8 + (3/8)*(-1)^n + ((n+1)/4)*(-1)^(n+1) + ((n+2)*(n+1)/4)*(-1)^(n+2).
0

%I #22 Apr 07 2024 17:12:06

%S 1,-1,3,-4,7,-9,13,-16,21,-25,31,-36,43,-49,57,-64,73,-81,91,-100,111,

%T -121,133,-144,157,-169,183,-196,211,-225,241,-256,273,-289,307,-324,

%U 343,-361,381,-400,421,-441,463,-484,507,-529,553,-576,601,-625,651

%N a(n) = 3/8 + (3/8)*(-1)^n + ((n+1)/4)*(-1)^(n+1) + ((n+2)*(n+1)/4)*(-1)^(n+2).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-2,0,2,1)

%F O.g.f.: (1+z+z^2)/((1-z)*(1+z)^3).

%F a(n+4) = -2*a(n+3) + 2*a(n+1) + a(n).

%t LinearRecurrence[{-2,0,2,1},{1,-1,3,-4},60] (* _Harvey P. Dale_, Sep 23 2019 *)

%K sign,easy

%O 0,3

%A _Richard Choulet_, Nov 20 2008

%E More terms from 13; extended by _Richard Choulet_, Nov 26 2008

%E Definition corrected by _Paolo P. Lava_, Dec 02 2008