login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^5-n^4-n^3-n^2-n.
1

%I #21 Sep 08 2022 08:45:39

%S 0,-3,2,123,684,2345,6222,14007,28088,51669,88890,144947,226212,

%T 340353,496454,705135,978672,1331117,1778418,2338539,3031580,3879897,

%U 4908222,6143783,7616424,9358725,11406122,13797027,16572948,19778609,23462070

%N a(n) = n^5-n^4-n^3-n^2-n.

%H Vincenzo Librandi, <a href="/A152017/b152017.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F a(n) = 6*a(n-1)- 15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), n>5. - _Harvey P. Dale_, Sep 13 2011

%F G.f. x*(-3+20*x+66*x^2+36*x^3+x^4) / (x-1)^6. - _R. J. Mathar_, Nov 17 2011

%t lst={};Do[AppendTo[lst,n^5-n^4-n^3-n^2-n],{n,0,5!}];lst

%t Table[n^5-Total[n^Range[4]],{n,0,30}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,-3,2,123,684,2345},30](* _Harvey P. Dale_, Sep 13 2011 *)

%o (Magma) [n^5-n^4-n^3-n^2-n: n in [0..40]]; // _Vincenzo Librandi_, Nov 18 2011

%Y Cf. A152015, A152016.

%K sign,easy

%O 0,2

%A _Vladimir Joseph Stephan Orlovsky_, Nov 20 2008

%E Changed offset to 0 from _Bruno Berselli_, Nov 02 2011