login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151954
Expansion of Product_{k>0} (1-k^2*x^k)^(-1/k).
4
1, 1, 3, 6, 16, 27, 79, 126, 331, 632, 1436, 2509, 6800, 11218, 26044, 51958, 114941, 205183, 502228, 875545, 2027193, 3963938, 8389190, 15504996, 37555290, 66502859, 145809046, 292860564, 621638120, 1156065731, 2701045579
OFFSET
0,3
LINKS
FORMULA
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A073705(k)*a(n-k) for n > 0. - Seiichi Manyama, Nov 05 2017
From Vaclav Kotesovec, Nov 05 2017: (Start)
a(n) ~ c * 3^(2*n/3) / n^(2/3), where
c = 4.674336739118905298732313884863019... if mod(n,3)=0
c = 4.299861572054701010776554223312792... if mod(n,3)=1
c = 4.239106098573472870377481583112857... if mod(n,3)=2
(End)
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1-k^2*x^k)^(-1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved