%I
%S 1,2,3,7,22,95
%N Number of nonisomorphic cube tilings of dimension n which can be constructed using the recipe presented at the beginning of Section 3 of the LagariasShor paper.
%C A weak lower bound for a(8) is 404.
%C It appears that there is exactly one trivial tiling in each dimension. If so, and this tiling is excluded, we get a sequence which potentially matches two existing sequences in the OEIS.
%H J. C. Lagarias and P. W. Shor, <a href="http://math.mit.edu/~shor/papers/cubetilings.pdf">Cubetilings of R^n and nonlinear codes</a>, preprint, 1993.
%H J. C. Lagarias and P. W. Shor, <a href="https://doi.org/10.1007/BF02574014">Cubetilings of R^n and nonlinear codes</a>, Discrete and Computational Geometry, Vol. 11, pp. 359391, 1994.
%K nonn,hard,more
%O 2,2
%A _Peter Shor_, Jul 30 2009
