|
|
A151612
|
|
Values of k arising in A160518: numbers k such that (2*k^3 - 1, 2*k^3 + 1) are twin primes.
|
|
2
|
|
|
6, 21, 99, 120, 249, 354, 375, 435, 600, 609, 675, 720, 804, 819, 906, 915, 1080, 1215, 1230, 1359, 1671, 1740, 1794, 1995, 2250, 2349, 2421, 2430, 2469, 2625, 2664, 2754, 2805, 2826, 2949, 3090, 3225, 3291, 3546, 3879, 4200, 4506, 4761, 4896, 5241, 5271
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
{n: 2*n^3-1 in A001359}. - R. J. Mathar, May 29 2009
|
|
EXAMPLE
|
6 is a term since 2 * 6^3 = 432 and 431 and 433 are twin primes.
|
|
MAPLE
|
isA001359 := proc(n) RETURN(isprime(n) and isprime(n+2)) ; end: for n from 1 to 8000 do twon3 := 2*n^3 ; if isA001359(twon3-1) then printf("%d, ", n) ; fi; od: # R. J. Mathar, May 29 2009
|
|
MATHEMATICA
|
Select[3*Range[2000], And @@ PrimeQ[2*#^3 + {-1, 1}] &] (* Amiram Eldar, Dec 28 2019 *)
|
|
CROSSREFS
|
Cf. A001359, A160518.
Sequence in context: A001553 A009247 A093774 * A344496 A012773 A012662
Adjacent sequences: A151609 A151610 A151611 * A151613 A151614 A151615
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Howard Berman (howard_berman(AT)hotmail.com), May 16 2009
|
|
EXTENSIONS
|
More terms from R. J. Mathar, May 29 2009
|
|
STATUS
|
approved
|
|
|
|