login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: (1 + x) * Product_{n>=1} (1 + x^(2^n-1) + x^(2^n)).
6

%I #18 Jul 29 2023 03:13:19

%S 1,2,2,2,3,4,3,2,3,4,4,5,7,7,4,2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,5,2,3,

%T 4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,25,

%U 16,6,2,3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26

%N G.f.: (1 + x) * Product_{n>=1} (1 + x^(2^n-1) + x^(2^n)).

%H N. J. A. Sloane, <a href="/A151553/b151553.txt">Table of n, a(n) for n = 0..16383</a>

%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>.

%F Recurrence: a(0)=1, a(1) = a(2) = 2; a(2^m-1)=2 for m >= 2; a(2^m) = 3 for m >= 2; a(2^m-2) = m for m >= 3; otherwise, for m >= 5, if m=2^i+j (0 <= j < 2^i - 1), a(m) = a(j) + a(j+1).

%F a(n) = Sum_{k>=0, n+k odd} binomial(A000120(n+k),k); the sum may be restricted further to k <= 2*A000523(n+1)+1 [based on Hagen von Eitzen's formula for A151552]. [corrected by _Amiram Eldar_, Jul 29 2023]

%e If formatted as a triangle:

%e .1,

%e .2,

%e .2,2,

%e .3,4,3,2,

%e .3,4,4,5,7,7,4,2,

%e .3,4,4,5,7,7,5,5,7,8,9,12,14,11,5,2,

%e .3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,25,16,6,2,

%e .3,4,4,5,7,7,5,5,7,8,9,12,14,11,6,5,7,8,9,12,14,12,10,12,15,17,21,26,25,16,7

%e ... 5,7,8,9,12,14,12,10,12,15,17,21,26,25,17,11,12,15,17,21,26,26,22,22,27,32,38,47,51,41,22,7,2,

%e .3,4,4,5,7,7,4,2, ...

%t CoefficientList[Series[(1+x)Product[1+x^(2^n-1)+x^2^n,{n,10}],{x,0,100}],x] (* _Harvey P. Dale_, Jul 13 2019 *)

%t a[n_] := Sum[If[OddQ[n + k], Binomial[DigitCount[n + k, 2, 1], k], 0], {k, 0, 2*Floor[Log2[n + 1]] + 1}]; Array[a, 92, 0] (* _Amiram Eldar_, Jul 29 2023 *)

%Y Cf. A139250, A151550, A151551, A151552.

%K nonn,tabf

%O 0,2

%A _N. J. A. Sloane_, May 20 2009