login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

When A160552 is regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., this is what the rows converge to.
16

%I #41 Feb 24 2021 02:48:18

%S 1,3,5,7,5,11,17,15,5,11,17,19,21,39,49,31,5,11,17,19,21,39,49,35,21,

%T 39,53,59,81,127,129,63,5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,

%U 67,21,39,53,59,81,127,133,91,81,131,165,199,289,383,321,127,5,11,17,19,21,39

%N When A160552 is regarded as a triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., this is what the rows converge to.

%C When convolved with A151575: (1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, ...) equals the toothpick sequence A139250: (1, 3, 7, 11, 15, 23, 35, 43, ...). - _Gary W. Adamson_, May 25 2009

%C Equals A160552: [1, 1, 3, 1, 3, 5, ...] convolved with [1, 2, 0, 0, 0, ...], equivalent to a(n) = 2*A160552(n) + A160552(n+1). - _Gary W. Adamson_, Jun 04 2009

%C Equals (1, 0, -2, 2, -2, 2, ...) convolved with the Toothpick sequence, A139250. - _Gary W. Adamson_, Mar 06 2012

%C It appears that the sums of two successive terms give A147646. - _Omar E. Pol_, Feb 18 2015

%H N. J. A. Sloane, <a href="/A151548/b151548.txt">Table of n, a(n) for n = 0..10000</a>

%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168, 2015

%F a(2^k-1) = 2^(k+1)-1 for k >= 0; otherwise a(2^k) = 5 for k >= 1; otherwise a(2^i+j) = 2a(j)+a(j+1) for i >= 2, 1 <= j <= 2^i-2. - _N. J. A. Sloane_, May 22 2009

%F G.f.: 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..oo). - _N. J. A. Sloane_, May 23 2009

%F a(n) = A147646(n) - a(n-1), n >= 1. - _Omar E. Pol_, Feb 19 2015

%e From _Omar E. Pol_, Jul 24 2009: (Start)

%e When written as a triangle:

%e 1;

%e 3;

%e 5,7;

%e 5,11,17,15;

%e 5,11,17,19,21,39,49,31;

%e 5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,63;

%e 5,11,17,19,21,39,49,35,21,39,53,59,81,127,129,67,21,39,53,59,81,127,133,91,...

%e (End)

%p G := 1/(1+x) + 4*x*mul(1+x^(2^k-1)+2*x^(2^k),k=1..20); # _N. J. A. Sloane_, May 23 2009

%p S2:=proc(n) option remember; local i,j;

%p if n <= 1 then RETURN(2*n+1); fi;

%p i:=floor(log(n)/log(2));

%p j:=n-2^i;

%p if j=0 then 5 elif j=2^i-1 then 2*n+1

%p else 2*S2(j)+S2(j+1); fi;

%p end; # - _N. J. A. Sloane_, May 22 2009

%t terms = 70; CoefficientList[1/(1 + x) + 4*x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 1, Log[2, terms] // Ceiling}] + O[x]^terms, x] (* _Jean-François Alcover_, Nov 14 2017, after _N. J. A. Sloane_ *)

%Y Cf. A139250, A160552, A151549, A078008, A246336, A147646, A151575.

%K nonn

%O 0,2

%A _David Applegate_, May 18 2009