Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Apr 17 2013 08:58:19
%S 1,2,12,101,1032,11920,149961,2009612,28274682,413539023,6242609402,
%T 96747540753,1533113138015,24762204978303,406616430143397,
%U 6774369810238176,114316146704465162,1951147377176414045,33643578373731545756,585472973069805944673,10273759638672970806593,181654478085079820726152
%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, -1), (-1, 0), (-1, 1), (1, -1), (1, 0)}
%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
%K nonn,walk
%O 0,2
%A _Manuel Kauers_, Nov 18 2008