login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, 1), (1, -1), (1, 0)}.
0

%I #23 Jan 01 2024 02:33:30

%S 1,1,3,12,57,301,1707,10191,63244,404503,2650293,17709684,120288313,

%T 828352036,5771747783,40625485570,288482116987,2064429518054,

%U 14874855533504,107832596542894,785986247826371,5757192302807027,42357833323697589,312901369167191854,2319946973815289676

%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1, 1), (1, -1), (1, 0)}.

%C From _Henri Mühle_, Nov 27 2020: (Start)

%C a(n) is also the sum over all parabolic Catalan objects associated with parabolic quotients of the symmetric group S_n. The parabolic quotients of S_n are indexed by compositions of n. If alpha=(a_1,a_2,..., a_r) is a composition of n, consider the Dyck path v_alpha = N^{a_1}E^{a_1}N^{a_2}E^{a_2}...N^{a_r}E^{a_r}. The number of parabolic Catalan objects Cat(alpha) associated with alpha equals the number of Dyck paths of semilength n weakly above v_alpha.

%C For instance, if n=3, there are four compositions: alpha_1=(3), alpha_2=(2,1), alpha_3=(1,2), alpha_4=(1,1,1). Then, a(3) = Sum_{i=1..4} Cat(alpha_i) = 1+3+3+5 = 12.

%C (End)

%H Nantel Bergeron, Cesar Ceballos, Vincent Pilaud, <a href="https://arxiv.org/abs/1807.03044">Hopf dreams</a>, arXiv:1807.03044 [math.CO], 2018. See p. 19.

%H M. Bousquet-Mélou and M. Mishna, <a href="https://arxiv.org/abs/0810.4387">Walks with small steps in the quarter plane</a>, arXiv:0810.4387 [math.CO], 2008-2009.

%H Cesar Ceballos, Wenjie Fang, Henri Mühle, <a href="https://arxiv.org/abs/1903.08515">The Steep-Bounce zeta map in Parabolic Cataland</a>, arXiv:1903.08515 [math.CO], 2019. See pp. 32ff.

%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]

%K nonn,walk

%O 0,3

%A _Manuel Kauers_, Nov 18 2008