%I #5 Dec 04 2016 13:57:04
%S 1,1,5,17,79,364,1811,9272,48993,264819,1459111,8168870,46354854,
%T 266122198,1543286620,9029379641,53243769463,316161637203,
%U 1889148487909,11352026514978,68565004825620,416059778720095,2535484046258784,15511973547395972,95244796176063627,586766962036461554
%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(1, 1), (1, 0), (0, 1), (0, 1), (1, 1), (1, 0), (1, 1)}
%H M. BousquetMélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0  Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[1 + i, 1 + j, 1 + n] + aux[1 + i, j, 1 + n] + aux[1 + i, 1 + j, 1 + n] + aux[i, 1 + j, 1 + n] + aux[i, 1 + j, 1 + n] + aux[1 + i, j, 1 + n] + aux[1 + i, 1 + j, 1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008
